Kinetic Study of Electrochemical Deposition of Nickel from Chloride Baths in the Presence of Saccharin

Document Type : Original Article

Authors

Department of Engineering, Shahrekord University, Shahrekord, Iran

Abstract

Nickel is an essential engineering material and electrodeposited Ni has been widely used in many fields to improve surface finishing, corrosion resistance and wear properties. The kinetics of electrochemical deposition of nickel from chloride baths in the presence and absence of saccharin on the copper substrate was investigated by applying cyclic voltammetry and chronoamperometry measurements. Our results showed that the kinetics of electrochemical deposition of nickel on the copper substrate was under diffusion control. In addition, in the presence of saccharin, the cathodic current peak decreased and the cathodic potential shifted to the more negative potentials. Nucleation and growth mechanisms also changed from instantaneous to progressive. Characteristics of nanocrystalline nickel coatings were studied by X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns showed the decrease of grain size in the presence of saccharin. FESEM images showed that the microstructure is modified and the morphology changes from cauliflower like to spherical in the presence of saccharin.

Keywords


  1. N. Elkhoshkhany, A. Hafnway, A. Khaled, Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating, J. Alloys Comp., 695(2017) 1505-1514.
  2. H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48(2000) 1-29.
  3. F. Gonzalez, A. Brennenstuhl, G. Palumbo, U. Erb, P. Lichtenberger, in: Materials Science Forum, Trans Tech Publ, (1996), 831-836.
  4. M. Danışman, The corrosion behavior of nanocrystalline nickel based thin films, Mater. Chem. Phys., 171(2016), 276-280.
  5. P. Herrasti Gonzalez, C. Ponce de Leon, F. Walsh, The corrosion behaviour of nanograined metals and alloys, Rev. De Metal., 48(2012), 377-394.
  6. J. M. Li, C. Chao, L.X. Song, J. F. Li, Z. Zhang, M. Xue, Y. Liu, Electrodeposition and characterization of nano-structured black nickel thin films, Trans. Nonferr. Met. Soc. China, 23 (2013), 2300-2306.
  7. D. Bera, S. C. Kuiry, S. Seal, Synthesis of nanostructured materials using template-assisted electrodeposition, Jom, 56 (2004), 49-53.
  8. R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, R.M. Smith, Recent developments in the electrodeposition of nickel and some nickel-based alloys, J. Appl. Electrochem., 36 (2006), 957-972.
  9. G. A. Di Bari, Electrodeposition of nickel, Modern electroplating, 5 (2000) 79-114.
  10. W.A. Badawy, K.M. Ismail, A.M. Fathi, Effect of Ni content on the corrosion behavior of Cu–Ni alloys in neutral chloride solutions, Electrochim. Acta, 50 (2005), 3603-3608.
  11. L. Y. Qin, J. S. Lian, Q. Jiang, Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni, Trans. Nonferr. Metal. Soc. China, 20 (2010), 82-89.
  12. A. Rashidi, A. Amadeh, The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings, Surf. Coat. Technol., 204(2009), 353-358.
  13. D. Sachdeva, N. Gupta, R. Balasubramaniam, Electrochemical characterisation of nanocrystalline nickel, Defence Sci. J., 58(2008), 525.
  14. M. Troyon, L. Wang, Influence of saccharin on the structure and corrosion resistance of electrodeposited CuNi multilayers, Appl. Surf. Sci., 103(1996), 517-523.
  15. Y. L. Zhu, Y. Katayama, T. Miura, Effects of coumarin and saccharin on electrodeposition of Ni from a hydrophobic ionic liquid, Electrochim. Acta, 123(2014), 303-308.
  16. T. H. De Keijser, J. Langford, E. J. Mittemeijer, A. Vogels, Use of the Voigt function in a single‐line method for the analysis of X‐ray diffraction line broadening, J. Appl. Crystall., 15(1982), 308-314.
  17. R. Renner, K. Liddell, Effect of thiourea and saccharin on the roughness of electrodeposited ultrathin nickel and cobalt layers, J. Appl. Electrochem., 32(2002), 621-627.
  18. A. Ciszewski, S. Posluszny, G. Milczarek, M. Baraniak, Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte, Surf. Coat. Technol., 183 (2004), 127-133.
  19. W. Zhou, S. Inoue, T. Iwahashi, K. Kanai, K. Seki, T. Miyamae, D. Kim, Y. Katayama, Y. Ouchi, Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface-an in-situ IR-visible sum-frequency generation spectroscopic study, Electrochem. Commun., 12 (2010), 672-675.
  20. M. Fleischmann, A. Saraby-Reintjes, The simultaneous deposition of nickel and hydrogen on vitreous carbon, Electrochim. Acta, 29 (1984), 69-75.
  21. C. Cui, J. Y. Lee, Effects of oxygen reduction on nickel deposition from unbuffered aqueous solutions I. Deposition process and deposit structure, J. Electrochem. Soc., 141 (1994), 2030-2035.
  22. C. Cui, J. Y. Lee, J. Lin, K. Tana, Effects of Oxygen Reduction on Nickel Deposition from Unbuffered Aqueous Solutions II. Characterization of the Electrode Interface in Electrodeposition, J. Electrochem. Soc., 142 (1995), 1132-1138.
  23. F. Nasirpouri, S. Janjan, S. Peighambari, M. Hosseini, A. Akbari, A. Samardak, Refinement of electrodeposition mechanism for fabrication of thin nickel films on n-type silicon (1 1 1), J. Electroanal. Chem., 690 (2013), 136-143.
  24. D. Grujicic, B. Pesic, Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions, Electrochim. Acta, 51 (2006) 2678-2690.
  25. T. Berzins, P. Delahay, Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes, J. Am. Chem. Soc., 75 (1953), 555-559.
  26. R. S. Nicholson, I. Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36(1964), 706-723.
  27. B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28 (1983), 879-889.
  28. E. Rudnik, M. Wojnicki, G. Włoch, Effect of gluconate addition on the electrodeposition of nickel from acidic baths, Surf. Coat. Technol., 207 (2012), 375-388.
  29. A. Bolzán, Electrodeposition of copper on glassy carbon electrodes in the presence of picolinic acid, Electrochim. Acta, 113 (2013), 706-718.
  30. S. P. Gou, I.-W. Sun, Electrodeposition behavior of nickel and nickel–zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt, Electrochim. Acta, 53 (2008), 2538-2544.
  31. M. Palomar-Pardavé, B. Scharifker, E. Arce, M. Romero-Romo, Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition, Electrochim. Acta, 50 (2005), 4736-4745.
  32. Y. L. Zhu, Y. Katayama, T. Miura, Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid, Electrochim. Acta, 55 (2010), 9019-9023.
  33. R. Mishra, R. Balasubramaniam, Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel, Corros. Sci. 46 (2004), 3019-3029.
  34. A. C. Mishra, A. K. Thakur, V. Srinivas, Effect of deposition parameters on microstructure of electrodeposited nickel thin films, J. Mater. Sci. 44 (2009), 3520-3527.