Transmission and Absorption Properties in the Novel Ultra-optical TiO2-Bi2O3-PbO Glass System

Document Type : Original Article

Author

Department of Inorganic Pigments and Glazers, Institute for Color Science and Technology,Tehran, Iran.

Abstract

Glasses with ultra-optical properties are most favored in all-optical communication devices, e.g. switches. Heavy polarizable Bi2O3 and PbO, in their high contents, have achieved the most high index of refraction and dispersion in oxide glasses, particularly in cooperation with relatively heavy glass conditional former, such as, TiO2. In this research, transmission and absorption properties of novel TiO2-Bi2O3-PbO (TBP) glass system were characterized by the spectrophotometry techniques in the near infera-red (2.5-10 µm) and ultraviolet/visible (0.25-1 µm) regions. The corresponding traces were explored with respect to the glass compositions. The Taus plot (method) was executed for the absorption coefficient (attenuation) measurements, and the subsequent related predictions in the uv/visible regions. Results indicated that TBP glasses claimed relatively appreciable absorption around, 7µm due to Ti-O bonds. Addition of TiO2 shifted transmission cut off and the related absorption peaks to higher wavelengths and broadened the absorption region. In the uv/visible region, addition of TiO2, as a conventional glass former, widened the transmission window in all by shifting attenuation to shorter wavelengths, where steeper absorption tails were observed. The overall attenuation in TBP glasses were more affected by Bi2O3 than PbO.

Keywords


  1. A. Jha, Inorganic Glasses for Photonics, Wiley Malaysia, 2016, 261-310.
  2. Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, Q. Gong, Ultrafast All-optical Switching, Adv. Opt. Mats., 5(2017), 1-21.
  3.  F. Idachaba, D. U. Ike and O. Hope, Future Trends in Fiber Optics Communication, Proc. World Cong. on Eng., WCE 2014, online, London, UK., I(2014), 1-5
  4. L. N. Dmitruk, S. K. Batygov, L. V. Moiseeva, O. B. Petrova, M. N. Brekhovskikh, V. A. Fedorov, Preparation and Properties of Heavy-Metal Halide Glasses, Neorganicheskie Mater., 43(2007), 887–890.
  5. J. P. Goure, Optics in Instruments, Wiley and Sons Pub., NY, 2011, 1-11, 95-135.
  6. J. M. Parker and H. Moghaddam, Some recent developments in glasses for nonlinear optics, Int. J. Elec., 76(2007), 849-856.
  7. M. Abdel-Baki and F. El-Diasty, Glasses for photonic technologies, Int. J. Opts. Appl., 3(2013), 125-137.
  8. J. Wong and C. A. Angell, Glass structure by spectroscopy, Marcel Dekker Inc., 1976, 213-340, 707-807.
  9. G. W. C. Kayes, T. H. Laby, Ionic radii, Properties of chemical bonds, Table of Physical and Chemistry Constants, Nat. Phys. Lab. (NPL), 2015.
  10. N. Turova, `Inorganic Chemistry in Table`, Springer, 2011, 52-79
  11. J. Duffy, Relationship between cationic charge, coordination number and polarizability in oxidic materials, J. Phys. Chem. B, 108(2004), 14137-14141.
  12. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach, J. Solid State Chem., 1(2002), 100-112.
  13. C. N. Banwell, Fundamentals of molecular spectroscopy, McGraw-Hill, London, 1966.
  14. H., Rowson, Properties and applications of glass, Glass Science and Technology 3, Elsevier, NY, 1984, 156-236.
  15. C. L. Babcock, Silicate glass technology method, Wiley-Inter-science, 1977.
  16. T., Maeder, Review of Bi2O3 based glasses for electronics and related applications, Int. Mat. Rev., 58(2013), 3-40.
  17. F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids, APS J. Phys. Rev., 92(1953), 1324-1326.
  18. I. Studenyak, M. Kranjčec, M. Kurik, Urbach rule in solid state physics, Int. J. Opt. and Appl., 4(2014), 76-83.
  19. B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie, Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solid, B 252(2015), 1700-1710
  20. A. Escobedo-Morales, I. I. Ruiz-Lopeza, M. deL. Ruiz-Peralta, L. Tepech-Carrillo, M. Sanchez-Cantua, J. E, Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy, J. Heliyon, online, Elsevier, 5(2019), eo1505.
  21. J. M. Parker and A. B. Seddon, Infrared transmitting optical fibers, in High Performance Glasses, eds. M. Cable and J. M. parker, Blackie, Canada, 1992, 252-284
  22. H. Ahmadi Moghaddam, Formation and stability of glasses with ultra-optical properties in TiO2–Bi2O3–PbO system, Glass Phys Chem., 5(2017), 404–409.
  23. S. Karlsson, L. G. Bäck, P Kidkhunthod, K Lundstedt, L Wondraczek, Effect of TiO2 on optical properties of glasses in the soda-lime-silicate system, Opt. Matls Exp., OSA, 6(2016), 1198-1216.
  24. K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photo-catalysis: A historical overview and future prospects, Japanese J. Appl. Phys., 44(2005), 8269–8285.
  25. A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photo-catalysis and related surface phenomena, Surf. Sci. Reps., 63(2008), 515-582.
  26. D. R. Brezinski, An infrared spectroscopy atlas for the coatings industry, Federation of Societies for Coating Technology, Chicago, 1991.
  27. T. Kokubo, M. Nishimura, M. Tashiro, IR transmission of (R2O or R`O)-(TiO2, Nb2O5 or Ta2O5)-Al2O3, J. Non-Cryst. Sol., 1(1976), 125-133.
  28. Q. Chen, Q. Wang, Q. Ma, H. Wang, Structure, spectra and Faraday rotation in TiO2 doped diamagnetic PbO-Bi2O3-B2O3 glasses, J. Non-Cryst. Solids, 464(2017), 14-22.
  29. W. H. Dumbaugh, Heavy metal oxide glasses containing Bi2O3, Phys. Chem. Glasses., 23(1986), 119-123.
  30. P. J. Worsfold, E. A. G. Zagatto, Spectrophotometry overview, encyclopedia of analytical science, module in chemistry, molecular sciences and chemical engineering, Elsevier, 2019, 244-248.
  31. J. L. Devore, Probability and Statistics for Engineering and the Sciences, MA: Cengage Learning, Boston, US, 2011, 508–510.
  32. H. Ahmadi Moghaddam, Dispersion and nonlinearity in ultra-optical Ga2O3 and TiO2-Bi2O3-PbO glass systems, Prog. Color Colorants Coat, 11(2018), 179-191.
  33. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review), J. Uni. Chem. Tech. Metal., 45(2010), 219-250.
  34. H. Ahmadi Moghaddam, Study of stable gallium oxide heavy metal (Ga2O3-Bi2O3-PbO) system glasses proposed as a base for optically noble glazes and enamels, Prog. Color, Colorants Coat., 3(2014), 201-212.
  35. H., Ahmadi Moghaddam, Tailoring and fabrication of ultra-dispersive glasses for novel coatings, 1st int. and 2nd nat. conference on color science and technology, Iran, 2006, 333-341
  36. I. M. G. dos Santos, R. C. M. Moreira, A. G. de Souza, R. Lebullenger, A. C. Hernandes, E. R. Leite, C. A. Paskocimas and E. Longo, Ceramic crucibles: a new alternative for melting of PbO-BiO1.5-GaO1.5 glasses, J. Non-Cryst. Solids, 319(2003), 304-310.
  37. J. M. Senior, Optical fiber communications principles and practice, Prentice Hall International, UK. Ltd., (1985), 62-110.
  38. I. Fanderlik, Optical property of glass, Glass Sci. & Tech., Elsevier Amsterdam, 1983, 19-179.
  39. H. Ahmadi Moghaddam, Preparation of ultra-dispersive glasses for designing novel coatings, Prog. Color Colorants Coat., 2(2009), 7-21.
  40. H. Ahmadi Moghaddam, Fabricating, determining stability and study of optical properties of novel glazes based on Nb2O5, La2O3 and PbO-B2O3 glass systems, J. Color Sci. Tech., 8(2014), 47-57.