The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells
Antisolvent-assisted one-step spin coating approach has been investigated as an effective method for the preparation of perovskite solar cells (PSC) under ambient conditions. The influence of antisolvent dropping delay time on the final morphology was investigated. The photovoltaic device with FTO/TiO2 block/TiO2-mp/CH3NH3PbI3/Au structure was fabricated, and the impact of different delay times on the morphology of CH3NH3PbI3 layers were examined. The hole transport materials (HTM) free PSC with optimal antisolvent dropping delay time exhibited open-circuit voltage (Voc) of 0.76 V with power conversion efficiency (PCE) of 3.54 %, which were much higher than those of the PSC fabricated without antisolvent treatment (Voc of 0.64 V and PCE of 1.51 %). Scanning electron microscopy and X-ray diffraction were used to study the morphology and structure of the CH3NH3PbI3 films. Photocurrent-voltage curves were plotted to investigate the photoelectric properties, carrier transfer, and recombination process in the fabricated perovskite solar cells. Our findings indicated that the proposed antisolvent-assisted one-step spin coating approach can provide a high-performance atmospheric method for fabrication of low-cost HTM-free perovskite solar cells.
M. Hosseinnezhad, M. Ghahari, H. Shaki, J. Movahedi, Investigation of DSSCs performance: the effect of 1,8-naphthalimide dyes and Na-doped TiO2, Prog. Color Colorants Coat., 13(2020), 177-185.
J. Movahedi, M. Hosseinnezhad, H. Haratizadeh, N. Falah, Synthesis and investigation of photovoltaic properties of new organic dye in solar cells devices, Prog. Color Colorants Coat., 12(2019), 33-38.
M. Hosseinnezhad, H. Shaki, Investigation of photovoltaic properties of 1,8-naphthalimide dyes in dye-sensitized solar cells, Prog. Color Colorants Coat., 11(2018), 253-258.
M. A. Green, A. Ho-baillie, H. J. Snaith, The emergence of perovskite solar cells. Nat photonic., 8(2014), 506-514.
A. Miyata, A.Mitioglu, P. Plochocka, O. Portugall, J. W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys., 11(2015), 582-587.
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1micrometer in an organometal trihalide perovskite absorber, Science,342(2013), 341-344.
G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L.M. Herz, H.J. Snaith, Environmental science formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ Sci., 7(2014), 982-988.
M. M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H. J. Snaith, Efficient hybrid solar cells based on meso-Superstructured organometal halide perovskites, Science, 338(2012), 643-647.
J. Burschka1, N. Pellet1, S. J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499(2013), 316-319.
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, L. Spiccia, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew. Chemie. Int Ed., 126(2014), 10056-10061.
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat Mater., 13(2014), 897-903.
Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2013), 622-623.
M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, Z. Fan, Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method, Sci. Rep., 5(2015), 1-9.
S. Sanchez, X. Hua, N. Phung, U. Steiner, A. Abate, Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells, Adv. Energy Mater., 8(2018), 1-7.
M. Konstantakou, D. Perganti, P. Falaras, T. Stergiopoulos, Anti-solvent crystallization strategies for highly efficient perovskite solar cells, Crystals, 291(2017), 1-21.
P. W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X. K. Xin, J. Lin, A. K.Y. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Adv. Mater., 26(2014), 3748-3754.
R. Surabhi, K. Bhat, A. Batra, A. Chilvery, M. Aggarwal, Synthesis, purification, crystal growth and characterization of Lead Iodide (PbI2) purified by a low-temperature technique, Adv. Sci. Eng. Med., 6(2014), 1269-1273.
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, Mesoscopic CH3NH3PbI3 /TiO2 heterojunction solar cells, J. Am. Chem. Soc., 134(2012), 17396-17399.
K. Kara, D. A. Kara, C. Kırbıyık, M. Ersoz, O. Usluer, A. L. Brisenog, M. Kus, Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells, RSC Adv., 6(2016), 26606-26611.
J. W. Jung, S. T. Williams, A. K. Y. Jen. Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv., 4(2014), 62971-62977.
J. Zhang, G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, B. Xu, Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction, J. Mater. Chem. A, 5(2017) 4190-4198.
M. Xiao, L. Zhao, M. Geng, Y. Li, B. Dong, Z. Xu, L. Wan, W. Liab, S. Wang, Selection of anti-solvent of efficient and stable cesium-containing triple cation planar perovskite solar cells, Nanoscale, 10(2018), 12141-12148.
X. Guo, C. Mccleese, C. Kolodziej, A. C. S. Samia, Y. Zhao, C. Burda, Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite, Dalton Trans., 45(2016), 3806-3813.
M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9(2016), 1989-1997.
W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimetre-scale grains, Science, 347(2015), 522-526.
Maleki, E., Ranjbar, M., & Kahani, S. . A. (2021). The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells. Progress in Color, Colorants and Coatings, 14(1), 47-54. doi: 10.30509/pccc.2021.81671
MLA
E. Maleki; M. Ranjbar; S. A. Kahani. "The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells", Progress in Color, Colorants and Coatings, 14, 1, 2021, 47-54. doi: 10.30509/pccc.2021.81671
HARVARD
Maleki, E., Ranjbar, M., Kahani, S. . A. (2021). 'The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells', Progress in Color, Colorants and Coatings, 14(1), pp. 47-54. doi: 10.30509/pccc.2021.81671
VANCOUVER
Maleki, E., Ranjbar, M., Kahani, S. . A. The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells. Progress in Color, Colorants and Coatings, 2021; 14(1): 47-54. doi: 10.30509/pccc.2021.81671