High performance Thermal Coating Comprising (CuO:NiO) Nanocomposite/C Spectrally Selective to Absorb Solar Energy

Document Type : Original Article

Authors

1 Mechanical Engineering Department, Engineering College, Al-Nahrain University, Jadriah, Baghdad, Iraq.

2 Department of Chemistry, College of Science, Al-Nahrain University,Jadriah, Baghdad, Iraq

Abstract

A novel nanocomposite consisted of nanomaterials as (CuO:NiO) and carbon (fuel ash) were designed to absorb solar energy. Thin films were made via casting and spin coating of the dopants nanocomposite thin films, containing different concentration ratios of CuO:NiO. These thin films are precipitated on a glass and copper substrates. The optical properties of the doped fuel ash films with nanoparticles were measured in the range of 250-1300 nm. The intensity of solar radiation was measured too. The data were analyzed and interpreted in terms of the theory of phonon-assisted direct electronic transitions. The Eg of the doped C was measured with different concentration ratios of (CuO:NiO) (A=0.5:2.5, B=1:2, C=1.5:1.5, D=2:1, E=2.5:0.5) wt. %, with a fixed concentration of  C of  (7) wt.%. The results of the doped samples revealed an energy gap of (2.5-3.9 eV) and the absorptivity ranged from (85-99 %) for all nanocomposites. The energy gap of this nanocomposite system is very similar to those of semiconductor and has high efficiency to absorb the solar energy radiation. In addition, the results showed that the heat absorbed by the samples subjected to solar energy on the surface would be a selective surface. Thus, the synthesized coating will be utilized on a flat plate collector as a trap to absorb solar energy. 

Keywords


  1. K.T. Roro, N.Tile, B. Yalisi, M. De Gama, T. Wittes, T. Roberts, A. Forbes, Selective solar absorber coating research at the CSIR (South Africa), world renewable energy congress/Sweden, (2011), 4006-4013.
  2. A. El-Aziz A.Said, Mohamed M.Abd El-Wahab, Soliman A. Soliman, Mohamed N. Goda, Synthesis and Characterization of Nano CuO-NiO Mixed Oxides, Nanosci. Nanoeng., 1(2014), 17-28.
  3. E. Yousif, Mustafa Abdallh, Hassan Hashim, Nadia Salih, Jumat Salimon, Bashar Mudhaffar Abdullah and Yip-Foo Win, Optical properties of pure and modified poly (vinyl chloride), Inter. J. Indust. Chem., 4(2013), 1-8.
  4. J. Li, G.Vizkelethy, P.Revesz, and J. W. Mayer, Oxidation and reduction of copper oxide thin film, J. Appl. Phys., 69(1991), 1020-1029.
  5. A. E. Rakhshani, Preparation characteristics and photovoltaic properties of cuprous oxide-a review, Solid-State Electron., 29(1986), 7-17.
  6. Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermo chimica Acta, 437(2005), 106-109.
  7. X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate Nano fibers, Nanotechnology, 16(2005), 37-39.
  8. F. Tao, Y. Shen, L. Wang, Controlled fabrication of flower-like nickel oxide hierarchical structures and their application in water treatment, Molecules, 17(2012), 703-715.
  9. K. Zhang, Kun Yu, Yufang Liu, Yuejin Zhao, An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method, Inter. J. Heat Mass Transfer, 114(2017), 1037–1044.
  10. M. Ghougali, O. Belahssen, A. Chala, Structural, Optical and electrical properties of NiO nanostructure thin film, J. Nano Electron. Phys., 8(2016), 04059.
  11. A.S. Hassanien, Alaa A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50 S50-xsex thin films, J. Alloys Compoun., 648(2015), 280-290.
  12. M. A. Abd-Alla, K. I. Aly, Arylidene polymers: synthesis, characterization, and morphology of new polyesters of diarylidenecycloalkanones containing thianthrene units, J. Macromolecular Sci. Part A Chem., 28(1991) 251-267.
  13. K. I. Aly, A. A. Khalaf, I. A. Alkskas, New polymer syntheses XII. polyketones based on diarylidenecycloalkanones, Eur. Poly. J., 39(2003), 1273–1279.
  14. N. S. Al-Muaikel, K. I. Aly, M. A. Hussein, Synthesis, characterization and antimicrobial properties of new poly(ether-ketone)s and copoly(ether-ketone)s containing diarylidenecycloalkanone moieties in the main chain, J. Appl. Poly. Sci., 108(2008), 3138–3147.
  15. K.I. Aly, M.A. Hussein, Synthesis, characterization and corrosion inhibitive properties of new thiazole based polyamides containing diarylidenecyclohexanone moiety, Chinese J. Polym. Sci., 33(2015), 1-13. 
  16. C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, Chemical bond approach to optical properties of some flash evaporated Se100-XSbX chalcogenide alloys, Eur. Phys. J. Appl. Phys., 59(2012), 1-7.
  17. M.V. Kanani, Davit Dhruv, H.K. Rathod, K.N. Rathod, Bhargav Rajyaguru, A.D. Joshi, P.S. Solanki, N.A. Shah, D.D. Pandy, Investigations on structural, optical and electrical property of ZnO-CuO core–shell nano-composite, Scripta Materialia, 165(2019), 25–28.
  18. J.B. Chaudhari, N.G. Deshpande, Y.G. Gudage, A. Ghosh, V.B. Huse, Ramphal sharma, studies on growth and characterization of ternary CdS1xSex alloy thin films deposited by chemical bath deposition technique, Appl. Surf. Sci., 254(2008), 6810–6816.
  19. F. Cao, Ting Wang, Xiaohong Ji, Enhanced Visible Photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam, Appl. Surf. Sci., 471(2019),  417-424.
  20. S. A. Mahmoud, Shereen Alshomer, Mou’ad A. Tarawnh, Structural and optical dispersion characterization of sprayed nickel oxide thin films, J. Modern Phys., 2(2011), 1178-1186.
  21. R. N. Abed, Nabeel K. Al-Sahib and Abdul Jabar N. Khalifa, Optical study to doping carbon with TiO2 that utilizing in thermal concentration, Orien. J. Phys. Sci., 2(2017), 109-113.
  22. H. Salaria, M. Sadeghinia, MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis, J. Photochem. Photobiol. A: Chem., 376(2019), 279–287.
  23. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superl. Microstruct., 89(2016), 153-169.
  24. W. Z. Tawfik, Z.S. Khalifa, M.Sh. Abdel‑wahab, A.H. Hammad, Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors, J. Mater. Sci. Mater. Electron., 30(2019), 1275–1281.
  25. D. Katzen, Esthy Levy, Yitzhak Mastai, Thin films of Silica–Carbon Nanocomposites for selective solar absorbers, Appl. Surf. Sci., 248(2005), 514–517.
  26. W.A. Al-Taa'y, H. Ibraheem, E. Yousif, H. Jelassi, Studies on surface morphology and electrical conductivity of PS thin films in presence of divalent complexes, Baghdad Sci. J., 16(2019), 588-594.
  27. K.A. Aly, A.M. AbdElnaeim, N. Afify, A.M. Abousehly, Improvement of the electrical properties of Se3Te1 thin films by in additions, J. Non-Crystalline Solids, 358(2012) 2759-2763.
  28. A.A. Yadav, E.U. Masumdar, Preparation and characterization of indium doped CdS0.2Se0.8 thin films by spray pyrolysis, Mater. Res. Bulletin, 45(2010), 1455-1459.
  29. D. Katzen, E. Levy, Y. Mastai, Thin films of silica–carbon nanocomposites for selective solar absorbers, Appl. Surf. Sci., 248(2005), 514–517.
  30. K. Zhang, Kun Yu, Yufang Liu, Yuejin Zhao, An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method, Inter. J. Heat Mass Transfer, 114(2017), 1037–1044.
  31. L. K. Konstantinou, T. A. Albanis, TiO2-assisted photo-catalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, a review, Appl. Cataly. B Environ., 49(2004), 1-14.
  32. H. Zollinger, Synthesis, properties and applications of organic dyes and pigments, color chemistry, VCH, Inc., New York, 1987, 25-41.