Enhancement of Adhesion Properties, Corrosion Resistance and Cathodic Disbonding of Mild Steel-Epoxy Coating Systems By Vanadium Conversion Coating

Document Type : Original Article

Authors

1 Department of Mining and Metallurgical Engineering, Corrosion Group, Amirkabir University of Technology, Tehran, Iran

2 Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran

Abstract

In this study, vanadium conversion coating(VCC) was deposited on the surface of soft-cast steel (St-37).  A thermoset coating was enforced on the VCC and blank substrates. The surface was characterized by field emission scanning electron microscope (FE-SEM), elemental mapping of energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The adhesion strength of the thermoset coating on the surface of the treated samples was measured before and after 35 days of submergence in 3.5 wt. % NaCl solution via a pull-off device. Meanwhile, the effect of VCC treatment on the thermoset coating (epoxy) was examined by electrochemical impedance spectroscopy (EIS) and cathodic delamination (CD) tests. FE-SEM, EDX and AFM studies of treated surfaces showed a homogeneous vanadium oxide/hydroxide layer precipitated on the metal which increased the surface roughness. It was shown that VCC significantly improved the corrosion resistance of the epoxy coating. The vanadium compounds also reduced the cathodic activity on steel resulting in lower cathodic disbandment. The lower adhesion loss was also observed on the vanadium treated sample in comparison with the blank one.

Keywords


  1. Y. Hao, F. Liu, E. H. Han, S. Anjum, and G. Xu, The mechanism of inhibition by zinc phosphate in an epoxy coating, Corr. Sci., 69(2013), 77-86.
  2. J. Hou, G. Zhu, J. Xu, H. Liu, Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater, J. Mater. Sci. Technol., 7(2013), 678-684.
  3. X. Liu, J. Xiong, Y. Lv, Y. Zuo, Study on corrosion electrochemical behavior of several different coating systems by EIS, Prog. Org. Coat., 64(2009), 497-503.
  4. M. Gharagozlou, B. Ramezanzadeh, Z. Baradaran, Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating, Appl. Surf. Sci., 377(2016), 86-98.
  5. M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, Development of a nanostructured Ce(III)-Pr(III) film for excellently corrosion resistance improvement of epoxy/polyamide coating on carbon steel, J. Alloy Compoun., 792(2019), 375-388.
  6. B. Ramezanzadeh, M. Attar, Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel, Prog. Org. Coat., 71.3(2011), 314-328.
  7. T. Wu, A. Foyet, A. Kodentsov, L. van der Ven, R. van Benthem, G. de With, Wet adhesion of epoxy–amine coatings on 2024-T3 aluminum alloy, Mater. Chem. Phys., 145(2014), 342-349.
  8. G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Cerium oxide nanoparticles influences on the binding and corrosion protection characteristics of a melamine-cured polyester resin on mild steel: An experimental, density functional theory and molecular dynamics simulation study, Corr. Sci., 118(2017), 69-83.
  9. M. Ghaffari, M. R. Saeb, B. Ramezanzadeh, P. Taheri, Demonstration of epoxy/carbon steel interfacial delamination behavior: Electrochemical impedance and X-ray spectroscopic analyses, Corro. Sci., 102(2016), 326-337.
  10. N. Rezaee, M. Attar, B. Ramezanzadeh, Studying corrosion performance, microstructure and adhesion properties of a room temperature zinc phosphate conversion coating containing Mn2+ on mild steel, Surf. Coat. Technol., 236(2013), 361-367.
  11. J. Marsh, J. Scantlebury, S. Lyon, The effect of surface/primer treatments on the performance of alkyd coated steel, Corros. Sci., 43(2001), 829-852.
  12. S. Adhikari, K. A. Unocic, Y. Zhai, G. Frankel, J. Zimmerman, W. Fristad, Hexafluorozirconic acid based surface pretreatments: Characterization and performance assessment, Electrochim. Acta., 56(2011), 1912-1924.
  13. G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusmà, S. Kaciulis, Zirconia primers for corrosion resistant coatings, Surf. Coat. Technol., 201(2007), 5822-5828.
  14. R. D. Maggio, L. Fedrizzi, S. Rossi, Effect of the chemical modification of the precursor of ZrO2 films on the adhesion of organic coatings, J. Adh. Sci. Technol., 15(2001), 793-808.
  15. M. Tabatabaei Majd, T. Shahrabi, B. Ramezanzadeh, The role of neodymium based thin film on the epoxy/steel interfacial adhesion and corrosion protection promotion, Appl. Surf. Sci., 464(2019), 516-533.
  16. T. S. Narayanan, Surface pretreatment by phosphate conversion coatings–a review, Rev. Adv. Mater. Sci., 9(2005), 130-177.
  17. M. Fedel, M. E. Druart, M. Olivier, M. Poelman, F. Deflorian, S. Rossi, Compatibility between cataphoretic electro-coating and silane surface layer for the corrosion protection of galvanized steel, Prog. Org. Coat., 69(2010), 118-125.
  18. J. Gailen, E. Vaughan, Protective coatings for metals, Charles Griffin & Co, Ltd., (1979), 97.
  19. T. Hanawa, M. Ota, Characterization of surface film formed on titanium in electrolyte using XPS, Appl. Surf. Sci., 55(1992), 269-276.
  20. H. E. Mohammadloo, A. Sarabi, R. M. Hosseini, M. Sarayloo, H. Sameie, R. Salimi, A comprehensive study of the green hexafluorozirconic acid-based conversion coating, Prog. Org. Coat., 77(2014), 322-330.
  21. N. Jantaping, C.A. Schuh, Y. Boonyongmaneerat, Influences of crystallographic texture and nanostructural features on corrosion properties of electrogalvanized and chromate conversion coatings, Surf. Coat. Technol., 329(2017), 120-130.
  22. A. S. Hamdy, I. Doench, H. Möhwald, Smart self-healing anti-corrosion vanadia coating for magnesium alloys, Prog. Org. Coat., 72(2011), 387-393.
  23. X. Zhang, W. Sloof, A. Hovestad, E. Van Westing, H. Terryn, J. De Wit, Characterization of chromate conversion coatings on zinc using XPS and SKPFM, Surf. Coat. Technol., 197(2005), 168-176.
  24. X. Zhang, C. Van den Bos, W. Sloof, A. Hovestad, H. Terryn, J. De Wit, Comparison of the morphology and corrosion performance of Cr (VI)-and Cr (III)-based conversion coatings on zinc, Surf. Coat. Technol., 199(2005), 92-104.
  25. R. Twite, G. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Prog. Org. Coat., 33(1998), 91-100.
  26. S. Cohen, Review: Replacements for chromium pretreatments on aluminum, Corrosion, 51(1995), 71-78.
  27. A. Pereira, G. Pimenta, B. Dunn, Assessment of chemical conversion coatings for the protection of aluminium alloys, ESA Sci. Technical Memor., 276(2008), 77-83.
  28. C. Tomachuk, C. Elsner, A. Di Sarli, O. Ferraz, Corrosion resistance of Cr (III) conversion treatments applied on electrogalvanised steel and subjected to chloride containing media, Mater. Chem. Phys., 119(2010), 19-29.
  29. B. Ramezanzadeh and M. Attar, Effects of Co(II) and Ni (II) on the surface morphology and anticorrosion performance of the steel samples pretreated by Cr (III) conversion coating, J. Sci. Eng., 68(2012), 015008-1.
  30. T. Bellezze, G. Roventi, R. Fratesi, Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings, Surf. Coat. Technol., 155(2002), 221-230.
  31. K. Cho, V. S. Rao, H. Kwon, Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc, Electrochim. Acta., 52(2007), 4449-4456.
  32. A. Magalhaes, I. Margarit, O. Mattos, Molybdate conversion coatings on zinc surfaces, J. Electroanaly. Chem., 572(2004), 433-440.
  33. T. Xu, C. Xie, Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property, Prog. Org. Coat., 46(2003), 297-301.
  34. C. Da Silva, I. Margarit-Mattos, O. Mattos, H. Perrot, B. Tribollet, V. Vivier, The molybdate–zinc conversion process, Corros. Sci., 51(2009), 151-158.
  35. H. Hassannejad, M. Moghaddasi, E. Saebnoori, A.R. Baboukani, Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy, J. Alloy Compoun., 725(2017), 968-975.
  36. J. Sun, G. Wang, Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by a cathodic electrochemical treatment, Surf. Coat. Technol., 254(2014), 42-48.
  37. Z. Mahidashti, B. Ramezanzadeh, G. Bahlakeh, Screening the effect of chemical treatment of steel substrate by a composite cerium-lanthanum nanofilm on the adhesion and corrosion protection properties of a polyamide-cured epoxy coating; Experimental and molecular dynamic simulations, Prog. Org. Coat., 114(2018), 188-200.
  38. H.R. Asemani, P. Ahmadi, A.A. Sarabi, H. Eivaz Mohammadloo, Effect of zirconium conversion coating: Adhesion and anti-corrosion  properties of epoxy organic coating containing zinc aluminum polyphosphate (ZAPP) pigment on carbon mild steel, Prog. Org. Coat., 94(2016), 18-27.
  39. H. Eivaz Mohammadloo, A.A. Sarabi, Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations, Appl. Surf. Sci., 387(2016), 252-259.
  40. H. Eivaz Mohammadloo, A.A. Sarabi, Ti-Based conversion coatings on cold-rolled steel substrate: the effect of practical parameters and Ti source on surface and electrochemical properties, Corrosion, 72(2016), 791-804.
  41. G. Kong, L. Lingyan, J. Lu, C. Che, Z. Zhong, Corrosion behavior of lanthanum-based conversion coating modified with citric acid on hot dip galvanized steel in aerated 1M NaCl solution, Corros. Sci., 53(2011), 1621-1626.
  42. X. Jiang, R. Guo, S. Jiang, Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy, Appl. Surf. Sci., 341(2015), 166-174.
  43. A. S. Hamdy, I. Doench, H. Möhwald, Intelligent self-healing corrosion resistant vanadia coating for AA2024, Thin Solid Films, 520(2011), 1668-1678.
  44. Z. Zou, N. Li, D. Li, Corrosion protection properties of vanadium films formed on zinc surfaces, Rare Metals., 30(2011), 146.
  45. K. Li, J. Liu, T. Lei, T. Xiao, Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy, Appl. Surf. Sci., 353(2015), 811-819.
  46. A. S. Hamdy, D. Butt, Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol–gel method for aluminum alloys, J. Mater. Proces. Technol., 181(2007), 76-80.
  47. H. Guan, R. Buchheit, Corrosion protection of aluminum alloy 2024-T3 by vanadate conversion coatings, Corrosion., 60(2004), 284-296.
  48. K. Yang, M. Ger, W. Hwu, Y. Sung, Y. C. Liu, Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy, Mater. Chem. Phys., 101(2007), 480-485.
  49. A. S. Hamdy, A. M. Beccaria, Corrosion protection performance of thickened oxide conversion coatings containing vanadium ions formed on aluminum composites, Corros. Preven. Control., 48(2001), 143-149.
  50. A. S. Hamdy, I. Doench, H. Möhwald, Vanadia-based coatings of self-repairing functionality for advanced magnesium Elektron ZE41 Mg–Zn–rare earth alloy, Surf. Coat. Technol., 206(2012), 3686-3692.
  51. A. S. Hamdy, I. Doench, H. Möhwald, Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media, Electrochim. Acta., 56(2011), 2493-2502.
  52. M. Motamedi, M. Attar, Nanostructured vanadium-based conversion treatment of mild steel substrate: formation process via noise measurement, surface analysis and anti-corrosion behavior, RSC Adv., 65(2016), 44732-44741.
  53. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Method., 9(2012), 671.
  54. Z. Zou, N. Li, D. Li, H. Liu, S. Mu, A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates, J. Alloy Compoun., 509(2011), 503-507.
  55. M. Raposo, Q. Ferreira, P. Ribeiro, A guide for atomic force microscopy analysis of soft-condensed matter, Modern Res. Educ. Topic Micros., 1(2007), 758-769.
  56. R. J. Good, Contact angle, Wetting, and adhesion: a critical review, J. Adh. Sci. Technol., 6(1992), 1269-1302.
  57. B. Ramezanzadeh, M. Attar, Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles, Mater. Chem. Phys., 130(2011), 1208-1219.
  58. B. Ramezanzadeh, M. Rostami, The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems, Appl. Surf. Sci., 392(2017), 1004-1016.
  59. P. A. Sørensen, K. Dam Johansen, C. Weinell, S. Kiil, Cathodic delamination: Quantification of ionic transport rates along coating–steel interfaces, Prog. Org. Coat., 68(2010), 70-78.
  60. K. Post, R. Robins, Thermodynamic diagrams for the vanadium-water system at 298·15K, Electrochim. Acta., 21(1976), 401-405.
  61. J. B. Jorcin, E. Aragon, C. Merlatti, N. Pébère, Delaminated areas beblankh organic coating: A local electrochemical impedance approach, Corros. Sci., 48(2006), 1779-1790.
  62. R. Naderi, M. Attar, The role of zinc aluminum phosphate anticorrosive pigment in protective performance and cathodic disbondment of epoxy coating, Corros. Sci., 52(2010), 1291-1296.
  63. R. Hirayama, S. Haruyama, Electrochemical impedance for degraded coated steel having pores, Corrosion., 47(1991), 952-958.
  64. F. Mansfeld, C. Tsai, Determination of coating deterioration with EIS: I. Basic relationships, Corrosion, 47(1991), 958-963