Reflectance Properties of Brown Mass Dyed Poly(ethylene terephthalate) Filament Yarns in the Visible-near Infrared Region

Document Type : Original Article

Authors

1 Textile Engineering Department, Yazd University, Yazd, Iran.

2 Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

Near infrared and visible reflectance properties of brown mass dyed poly(ethylene terephthalate) melt spun filament yarns were studied compared to natural brown hue of desert areas. Pigment Red 177, Pigment Green 7 and carbon black particles were used in this investigation. Near-infrared reflectance, mechanical and thermal properties as well as crystallinity of the camouflage poly(ethylene terephthalate) mass dyed filament yarns were measured. The obtained result indicated that by using an optimal content of the mentioned colored pigments and carbon black particles during the melt spinning operation could be achieved to desirable near infrared reflectance properties in the poly(ethylene terephthalate) drawn filament yarns. Also, mechanical properties of the samples were acceptable evaluated. The samples with the highest concentration of pigments had the highest percentage of crystallinity. XRD results indicated that 2 sample with the highest concentration of pigments and additives among other samples had the greatest distance between the crystalline plates. Maximum space between crystal layers is about 4.01-4.08 Å. Also, microstructural uniformity of the sample was confirmed by a low variation of samples.

Keywords


  1. K. K. Gupta, A. Nishkam, N. Kasturiya, Camouflage in the non-visible region, J. Ind. Text., 1(2001), 27-42.
  2. U. Goudarzi, J. Mokhtari, M. Nouri, Camouflage of cotton fabrics in visible and NIR region using three selected vat dyes, Color Res. Appl., 2(2014), 200-207.
  3. M. Khajeh Mehrizi, S. M. Mortazavi, S.Mallakpour, S.M. Bidoki, Effect of Carbon Black and Carbon Active on Color and Physical Properties of Cotton/Nylon Fabric, J. Color. Sci. Tech., 2(2014), 93-100.
  4. H. Goodden, Camouflage and art: design for deception in world war2. Unicorn Press. ISBN 978-0-906290-87-3., 2007.
  5. A. Tankus, Y. A. Yeshorun, Model for visual camouflage breaking. Biologically motivated computer vision, Springer Berlin Heidelberg., 1811(2000), 139-149.
  6. A. C. Copeland, M. M. Trivedi, Models and metrics for signature strength evaluation of camouflaged targets, Int. Soc. Opt. Photonic., 3070(1997), 194-199.
  7. J. Ch. Woon, A. Wonmi, Sh. K. Myung, P. Jeeyea, K. Seungduk, H. H. Kwang, Making pixel patterns automatically for camouflage – using color information from their background, HCI., 174 (2011), 98-101.
  8. E. Wilusz, Military textiles, Cambridge, 2008.
  9. A. R. Horrocks, S. C. Anand, Hand book of technical textiles, Cambridge, CRC Press., 2000, 439-441.
  10. V. Rubeziene, I. Padleckiene, J. Baltusnikaite, S. Varnaite, Evaluation of camouflage effectiveness of printed fabrics in visible and near infrared radiation spectral ranges, J. Mater. Sci., 14(2008), 361-365.
  11. H. Zhang, J. C. Zhang, Near-infrared green camouflage of cotton fabric using vat dyes, J. Text. Inst., 1(2008), 83-88.
  12. H. Zhang, J. C. Zhang, Near-infrared green camouflage of PET fabrics using disperse dyes, SenʼI Gakkaishi., 63(2007), 223-229.
  13. S. M. Burkinshaw, G. Hallas, A. D. Towns, Infrared camouflage, J. Ind. Chem., 1(1996), 47-53.
  14. V. Rubeziene, G. Minkuviene, J. Baltusnikaite, I. Padleckiene, Development of visible and near-infrared camouflage textile materials, J. Mater. Sci., 26(2009), 173-177.
  15. A. K. Bendiganavale, V. C. Malshe, Infrared reflective inorganic pigments, Chem. Eng. J., 1(2008), 67-79.
  16. M. Khajeh Mehrizi, S. M. Mortazavi, S.H. Mallakpour, S. M. Bidoki, M. Vik, M. Vikova, Effect of carbon black nanoparticles on reflective behavior of printed cotton/nylon fabrics in visible/near-infrared regions, Fibers polym., 4(2012), 501-506.
  17. M. Abbasipour, M. Khajeh Mehrizi, Investigation of changes of reflective behavior of cotton/polyester fabric by TiO2 and carbon black nanoparticles, Sci. Iran., 3(2012), 954-957.
  18. M. Khajeh Mehrizi, F. Bokaei, N. Jamshidi, Visible-near infrared concealment of cotton/nylon fabrics using colored pigments and multiwalled carbon nanotube particles (MWCNTs), Color Res. Appl., 1(2015), 93-98.
  19. K. Frankel, Polymer fibers, fabrics and equipment with a modified near infrared reflectance signature, US Pat. 7, 008,694B1, 2006.
  20. N. Esmaeilian, M. A. Tavanaie, S. M. Bidoki, M. Khajeh Mehrizi, Production and characterization of camouflage poly(ethylene terephthalate) filament yarns during the melt spinning process, J. Text. Inst., 4(2014), 406-413.
  21. M. Norouzi, M. A. Tavanaie, S. M. Bidoki, Mechanical and physical properties of melt-spun polypropylene camouflage fibers with carbon black particles, Paper presented at the 2nd National conference of nano science in defense applications, Iran, Tehran, (2012), 5-82.
  22. M. A. Tavanaie, N. Esmaeilian, M. R. M. Mojtahedi, Olive hue visible-near infrared camouflage properties of high-speed melt spun poly(ethylene terephthalate) multifilament yarns, Dyes Pigm., 114(2014), 267-272.
  23. Standard test methods for measuring reflective properties of ASTM Standard, Annual Book of ASTM Standard, ASTM Standard, E1331, 2015.
  24. Hochst, Technical information DF0042E, British Pat. 1501370, Textile printing No.4. 1978.
  25. H. Jaffari, M. Khajeh Mehrizi, S. Fattahi, The effect of inorganic nano particles on camouflage properties of cotton/polyester fabrics, Prog. Color Colorant Coat., 9(2016), 29-40.
  26. Standard test methods for measuring tensile properties of as-spun filament yarns, Annual book of ASTM Standard, ASTM Standard, D3822-95a, 1997.
  27. F. Fourne, Synthetic fibers: machines and equipment, manufacture, properties. Munich: Hanser / Gardner, 1998.
  28. J. E. Mark, Physical properties of polymers handbook, Springer, 2nd ed, 2006, 637, 39-3 Table.
  29. B. D. Cullity, S. R. Stock, Elements of X-Ray diffraction, Addision-Wesley publishing company INC., New York, 195656-10137.
  30. S. N. Corns, Novel near-infrared absorbing dyes (Unpublished doctoral dissertation), Department of Color Chemistry and Dyeing, University of Leeds, Leeds, UK, 1990.
  31. M. Norouzi, M. A. Tavanaie, S. M. Bidoki,  A study on the effects of carbon black particles with nano scale size on reflection spectrum of polypropylene fiber, Paper presented at the 1 St conference of nano science and technology, Yazd University, Yazd, Iran, (2010).
  32. J. P. M. Dortmans, Polyester industrial yarn developments, J. Textile Month, (1988), 43-46.
  33. M. A. Mabrouk, Tow-beam interference detection of the changes in fiber structural parameters during low drawing process, Elsevier Sci, 21(2002), 897-904.
  34. E. Harkin Jones, W. R. Murphy, N. Macauley, The effect of nucleating agent on the morphology and crystallization behavior of polypropylene, Color Technol. Plast., (1999), 249-254.
  35. F. L. Binsbergen, Heterogeneous nucleation in crystallization of polyolefins, J. Polym. Sci, 11(1973), 117-135.
  36. H. Tavanaie, M. Morshed, M. Zarebini, A. Salehi Rezve, A study of the nucleation effect of pigment dyes on the microstructure of mass dyed bulked continuous filament polypropylene, Iran. Polym. J., 14(2005), 267-276.
  37. A. Ebrahimzade, M. R. M. Mojtahedi, R. Semnani Rahbar, Study on characteristics and afterglow properties of luminous polypropylene/rare earth strontium aluminate fiber, J. Mater. Sci., (2017), 10-19.