Aseries of samples was sintered from nanometric BaTiO3 powder by spark plasma sintering (SPS). Sintered tablets were polished, sputtered by aluminum to create electrode system and tested in DC and AC electric fields. The results were correlated with the SPS processing parameters and are discussed in connection with other BaTiO3 samples produced by SPS with or without additional heat treatment. Majority of our SPS fired samples had, even without subsequent thermal treatment, advantageous combination of high permittivity, DC resistivity and low loss factor, seldom reported for SPS technology. Samples were tested also in annealed state and compared with as-sintered ones.
P. Ren, H. Fan, X. Wang, K. Liu, A novel approach to prepare tetragonal BaTiO3 nanopowders, Mater. Lett., 65(2011), 212-214.
X. Zhiguo, W. Haidou, Z. Lina, Z. Xinyuan, H. Yanfei, Properties of the BaTiO3 coating prepared by supersonic plasma spraying, J. Alloy. Compd., 582(2014), 246-252.
M. H. Zhao, D. A. Bonnell, J. M. Vohs, Effect of ferroelectric polarization on the adsorption and reaction of ethanol on BaTiO3, Surf. Sci., 602(2008), 2849-2855.
B. Li, X. Wang, L. Li, H. Zhou, X. Liu, X. Han, Y. Zhang, X. Qi, X. Deng, Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering, Mater. Chem. Phys., 83(2004), 23-28.
U. C. Chung, C. Elissalde, S. Mornet, M. Maglione, Controlling internal barrier in low loss BaTiO3 supercapacitors, Appl. Phys. Lett., 94(2009), 072903.
P. Ctibor, H. Seiner, J. Sedlacek, Z. Pala, P. Vanek, Phase stabilization in plasma sprayed BaTiO3, Ceram. Int., 39(2013), 5039-5048.
Z. Valdez-Nava, S. Guillemet-Fritsch, Ch. Tenailleau, T. Lebey, B. Durand, J.Y. Chane-Ching, Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering, J. Electroceram., 22(2009), 238-244.
M. B. Fraga, J. P. Delplanque, N. Yang, E. J. Lavernia, T.C. Monson, High Pressure FAST of Nanocrystalline Barium Titanate, Ceram. Int., 42(2016), 13868-13875.
H. Maiwa, Structure and properties of Ba(Zr0.2Ti0.8)O3 ceramics prepared by spark plasma sintering, J. Mater. Sci., 43(2008), 6385-6390.
P. Ctibor, J. Sedlacek, K. Neufuss, P. Chraska, Dielectric relaxation in calcium titanate-containing ceramics prepared by plasma spraying, Ceram. Int., 29(2003), 955-960.
H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), 65-71.
M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, Infuence of foreign ions on the crystal structure of BaTiO3, J. Eur. Ceram. Soc., 20(2000), 1997-2007.
D. H. Park, Y. G. Jung, U. Paik, Crack suppression behavior with post-process parameters in BaTiO3-based Ni-MLCCs, Ceram. Int., 31(2005), 655-661.
P. Ctibor, J. Sedlacek, V. Ryukhtin, J. Cinert, F. Lukac, Barium titanate nanometric polycrystalline ceramics fired by spark plasma sintering, Ceram. Int., 42(2016), 15989-15993.
D.S.B. Heidary, C.A. Randall, Analysis of the degradation of BaTiO3 resistivity due to hydrogen ion incorporation: Impedance spectroscopy and diffusion analysis, Acta Mater., 96(2015), 344-351.
A. R. West, T. B. Adams, F. D. Morrison, D. C. Sinclair, Novel high capacitance materials: BaTiO3:La and CaCu3Ti4O12, J. Eur. Ceram. Soc., 24 (2004), 1439-1448.
M. Maglione, M.A. Subramanian, Dielectric and polarization experiments in high loss dielectrics: a word of caution, Appl. Phys. Lett., 93(2008), 032902.
P. Ctibor, J. Čížek, J. Sedláček, F. Lukáč, Dielectric properties and vacancy-like defects in plasma-sprayed barium titanate, J. Am. Ceram. Soc., (2017), 1–12. https://doi.org/10.1111/jace.14840
D. Martinez, D. Ghosh, J. Jones, Investigation of annealing condition effects on impedance of barium titanate ferroelectric ceramic, report of the University of Florida, http://www.phys.ufl.edu/REU/2012/ MartinezPaper.pdf.
Z. Y. Shen, J. F. Li, Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure, J. Ceram. Soc. Jpn, 118(2010), 940943.
H. Ghayour, M. Abdellahi, A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics, Powder Technol.,292(2016,) 84-93.
J.C. M’Peko, J.S.C. Francis, R. Raj, Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity, J. Eur. Ceram. Soc., 34 (2014), 3655-3660.
K. Chen, X. Zhang, H. Wang, L. Zhang, J. Zhu, F. Yang, L. An, Making nanostructured ceramics from micrometer-sized powders via grain refinement during SPS sintering, J. Am. Ceram. Soc., 91(2008), 2475-2480.
Y. Tan, J. Zhang, Y. Wu , C. Wang , V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Unfolding grain size effects in barium titanate ferroelectric ceramics, Sci. Reports., 5(2015), 9953-9962.
R. Licheri, S. Fadda, R. Orru, G. Cao, V. Buscaglia, Self-propagating high-temperature synthesis of barium titanate and subsequent densification by spark plasma sintering (SPS), J. Europ. Ceram. Soc., 27(2007), 2245–2253.
K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in BaTiO3, J. Am. Ceram. Soc., 72(1989), 1555–1558.
L. Pawlowski, The relationship between structure and dielectric properties in plasma-sprayed alumina coatings, Surf. Coat. Technol., 35(1988), 285-298.
P. Ctibor, H. Ageorges, V. Stengl, N. Murafa, I. Pis, T. Zahoranova, V. Nehasil, Z. Pala, Structure and properties of plasma sprayed BaTiO3 coatings: spray parameters versus structure and photocatalytic activity, Ceram. Intl., 37(2011), 2561–2567.
R. Berthelot, B. Basly, S. Buffiere, J. Majimel, G. Chevallier, A. Weibel, A. Veillere, L. Etienne, U-Chan Chung, G. Goglio, M. Maglione, C. Estournes, S. Mornet, C. Elissalde, From core – shell BaTiO3@MgO to nanostructured low dielectric loss ceramics by spark plasma sintering, J. Mater. Chem. C., 2(2014), 683-694
Cinert, J. , Ctibor, P. and Sadlacek, J. (2020). Barium Titanate Dielectric Ceramics Fired by Spark Plasma Sintering with and without Annealing. Progress in Color, Colorants and Coatings, 13(2), 85-92. doi: 10.30509/pccc.2020.81609
MLA
Cinert, J. , , Ctibor, P. , and Sadlacek, J. . "Barium Titanate Dielectric Ceramics Fired by Spark Plasma Sintering with and without Annealing", Progress in Color, Colorants and Coatings, 13, 2, 2020, 85-92. doi: 10.30509/pccc.2020.81609
HARVARD
Cinert, J., Ctibor, P., Sadlacek, J. (2020). 'Barium Titanate Dielectric Ceramics Fired by Spark Plasma Sintering with and without Annealing', Progress in Color, Colorants and Coatings, 13(2), pp. 85-92. doi: 10.30509/pccc.2020.81609
CHICAGO
J. Cinert , P. Ctibor and J. Sadlacek, "Barium Titanate Dielectric Ceramics Fired by Spark Plasma Sintering with and without Annealing," Progress in Color, Colorants and Coatings, 13 2 (2020): 85-92, doi: 10.30509/pccc.2020.81609
VANCOUVER
Cinert, J., Ctibor, P., Sadlacek, J. Barium Titanate Dielectric Ceramics Fired by Spark Plasma Sintering with and without Annealing. Progress in Color, Colorants and Coatings, 2020; 13(2): 85-92. doi: 10.30509/pccc.2020.81609