Cure Kinetic of Polyurethane/Fluorinated POSS Hybrid

Document Type : Original Article

Authors

1 Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.

2 Department of Surface Coatings and Corrosion, Institute for Color Science and Technology,Tehran, Iran

Abstract

One of the decisive factors in obtaining the desired properties in coatings is their complete curing, which necessitates the study of kinetics of curing. In recent years, many studies have been conducted on the use of polyhedral oligomeric silsesquioxane (POSS) in coatings. Creating functional groups on POSS and using it in formulation can create new or improve the properties of coatings. In this study, the cure kinetics between hydroxyl functional acrylic resin, aliphatic polyisocyanate and fluorinated POSS with terminal hydroxyl group (F-POSS-OH) was studied using both the Malek and model-free isoconversional method (Flynn-Wall-Ozawa and Kissingere-Akahirae-Sunose) by DSC. The parameters of the cure kinetic equation for both systems were calculated and the effect of F-POSS-OH on the activation energy of polyurethane systems is investigated by free models. The results are shown that the m parameter in the cure kinetic equation for the coatings containing the F-POSS-OH increased, which indicates an increase in the autocatalytic effect of the curing system. Also, in the free model, the F-POSS-OH was reduced the activation energy of reaction.

Keywords


  1. J. Wu, T. Patrick, POSS polymers: Physical properties and biomaterials applications, J. Macromol. Sci., Polym. Rev., 49(2009), 25-63.
  2. G. Li, L. Wang, H. Ni, C.U. Pittman Jr, Polyhedral oligomericsilsesquioxane (POSS) polymers and copolymers: A review, J. Inorg. Organomet. Polym., 11(2001), 123-154.
  3. C. Marcolli, G. Calzaferri, Review mono substituted octasilasesquioxanes, Appl. Organometal. Chem., 13(1999), 213-226.
  4. P. A. Agaskar, New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15, Inorg. Chem., 30(1991), 2707-2708.
  5. A. J. Chalk, J. F. Harrod, Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by group VIII metal complexes, J. Am. Chem. Soc., 87(1965), 16-21.
  6. L. V. Karabanova, L. A. Honcharova, N. V. Babkina, V. I. Sapsay, D. O. Klymchuk, POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology, Polym. Test., 69(2018), 556-562.
  7. C. Zhang, T. J. Bunning, R. M. Laine, Synthesis and characterization of liquid crystalline silsesquioxanes, Chem. Mater., 13(2001), 3653-3662.
  8. D. R. Carmoa, N. L. D. Filhob, N. R. Stradiottoa, Synthesis and preliminary characterization of octakischloropropyldimethylsiloxy) octasilsesquioxane, Mater. Res., 7(2004), 499-504.
  9. D. N. L. Filho, H. A. Aquino, G. Pires, L. Caetano, Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers, J. Braz. Chem. Soc., 17(2006), 533-541.
  10. D. R. Carmo, L. L. Paim, N. L. D. Filho, N. R. Stradiotto, Preparation, characterization and application of a nanostructured composite: Octakis (cyanopropyldimethylsiloxy) octasilsesquioxane, Appl. Surf. Sci., 253(2007), 3683-3689.
  11. H. Linxi, Y. Peck, X. W. Wang, D. A. Wang, Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity, Sci. China Chem., 57(2014), 596-604.
  12. K. Hailu, G. Guthausen, W. Becker, A. König, A. Bendfeld, E. Geissler, In-situ characterization of the cure reaction of HTPB and IPDI by simultaneous NMR and IR measurements, Polym. Test., 29(2010), 513-519.
  13. G. H. Lopes, J. Junges, R. Fiorio, M. Zeni, A.J. Zatter, Thermoplastic polyurethane synthesis using POSS as a chain modifier, Mater. Res., 15(2012), 698-704.
  14. O. Monticelli, A. Fina, D. Cavallo, E. Gioffredi, G. Delprato, On a novel method to synthesize POSS-based hybrids: an example of the preparation of TPU based system, eXPRESS Polym. Lett., 7(2013), 966-973.
  15. B. Pilch-Pitera, Blocked polyisocyanates containing monofunctional polyhedral oligomericsilsesquioxane (POSS) as crosslinking agents for polyurethane powder coatings, Prog. Org. Coat., 76(2013), 33-41.
  16. D. Prządka, J. Jęczalik, E. Andrzejewska, B. Marciniec, M. Dutkiewicz, M. Szłapka, Novel hybrid polyurethane/POSS materials via bulk polymerization, React. Funct. Polym., 73(2013), 114-121.
  17. F. Chu, T. McKenna, S. Lu, Curing kinetics of an acrylic resin/epoxy resin system using dynamic scanning calorimetry, Eur. Polym. J., 33(1997), 837-840.
  18. J. Ma´lek, A computer program for kinetic analysis of nonisothermal thermoanalytical data, Thermochim. Acta., 138(1989), 337-346.
  19. J. Ma´lek, The kinetic analysis of non-isothermal data, Thermochim. Acta., 200(1992), 257-269.
  20. G. Senum, R. Yang, Rational approximations of the integral of the Arrhenius function, J. Therm. Anal., 11(1977), 445-447.
  21. H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), 1702-1706.
  22. N. Koga, Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature, Thermochim. Acta., 258(1995), 145-159.
  23. J. H. Flynn, L. A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci., Part C: Polym. Lett., 4(1966), 323-328.
  24. T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Rep. Chiba Inst. Technol., 16(1971), 22-31