Add-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations

Document Type : Original Article

Authors

1 Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran

2 Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, P.O. Box: 654-16765, Tehran, Iran

3 Petrochemical Research and Technology Company (NPC-rt), National Petrochemical Company (NPC), Tehran, Iran

4 Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran

Abstract

This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and backbone of benzothiadiazole (BT) are fed into a home-written artificial neural network (ANN)/genetic algorithm (GA) hybrid code to optimize film-casting parameters. The annealing temperature, spin coating spin rate, and donor/acceptor ratio taken from available literature are applied to give the machine chance of learning trends in the power conversion efficiency (PCE). DPP-BT structures virtually born in the mind of machine are then screened for resemblance survey to receive a tag of desired characteristic. The results enable device manufacturers to identify the sensitivity of designed molecules to specific film casting conditions, while homologous structures may result in similar responses against design variables.

Keywords


  1. N. J. Sheikh, D. F. Kocaoglu, L. Lutzenhiser, Social and political impacts of renewable energy: Literature review, Technological Forec. Social Change, 108(2016), 102-110.
  2. W. Hoffmann, Photovoltaics as a Major Contributor to the Future Global Energy Needs and a 100% Renewably Powered World, in:  Photovoltaics for Sustainable Electricity and Buildings, Springer, 2017, pp. 55-93.
  3. A. J. Heeger, 25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation, Adv. Mater., 26(2014), 10-28.
  4. Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Progress in emerging solution-processed thin film solar cells–Part I: polymer solar cells, Renew. Sustain. Energy Rev., 56(2016), 347-361.
  5. B. H. Jørgensen, K. K. Andersen, E. J. Wilson, Accelerating the clean energy revolution - perspectives on innovation challenges: DTU International Energy Report 2018, Technical University of Denmark (DTU), 2018.
  6. S. K. Jha, J. Bilalovic, A. Jha, N. Patel, H. Zhang, Renewable energy: Present research and future scope of Artificial Intelligence, Renew. Sustain. Energy Rev., 77(2017), 297-317.
  7. C. Dyer-Smith, J. Nelson, Y. Li, Organic solar cells, in:  McEvoy's Handbook of Photovoltaics (Third Edition), Elsevier, 2017, pp. 567-597.
  8. R. Po, J. Roncali, , Beyond efficiency: scalability of molecular donor materials for organic photovoltaics, J. Mater. Chem. C, 4(2016), 3677-3685.
  9. K. A. Mazzio, C.K. Luscombe, The future of organic photovoltaics, Chem. Soc. Rev., 44(2015), 78-90.
  10. R. Gaudiana, Organic photovoltaics: Challenges and opportunities, J. Polym. Sci., Part B: Polym. Phys., 50(2012), 1014-1017.
  11. T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business, market and intellectual property analysis of polymer solar cells, Sol. Energy Mater. Sol. Cells, 94(2010), 1553-1571.
  12. Y. Yang, G. Li, Progress in high-efficient solution process organic photovoltaic devices, Springer, 2016.
  13. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc., 139(2017), 7148-7151.
  14. Z. Luo, H. Bin, T. Liu, Z.G. Zhang, Y. Yang, C. Zhong, B. Qiu, G. Li, W. Gao, D. Xie, Fine‐tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%, Adv. Mater., 30(2018), 1706124.
  15. T. Heumueller, W. R. Mateker, A. Distler, U.F. Fritze, R. Cheacharoen, W.H. Nguyen, M. Biele, M. Salvador, M. von Delius, H.-J. Egelhaaf, M.D. McGehee, C.J. Brabec, Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability, Energy Environ. Sci., 9(2016), 247-256.
  16. J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, J.X. Tang, Single‐junction polymer solar cells exceeding 10% power conversion efficiency, Adv. Mater. (Weinheim, Ger.), 27(2015), 1035-1041.
  17. H. Choi, S. J. Ko, T. Kim, P. O. Morin, B. Walker, B. H. Lee, M. Leclerc, J. Y. Kim, A. J. Heeger, Small‐bandgap polymer solar cells with unprecedented short‐circuit current density and high fill factor, Adv. Mater., 27(2015), 3318-3324.
  18. S. O. Oseni, G. T. Mola, Properties of functional layers in inverted thin film organic solar cells, Sol. Energy Mater. Sol. Cells, 160(2017), 241-256.
  19. P. W. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells, Adv. Mater., 19(2007), 1551-1566.
  20. C. Curutchet, B. Mennucci, Quantum chemical studies of light harvesting, Chem. Rev., 117(2017), 294-343.
  21. S. Sweetnam, R. Prasanna, T. M. Burke, J. A. Bartelt, M. D. McGehee, How the energetic landscape in the mixed phase of organic bulk heterojunction solar cells evolves with fullerene content, J. Phys. Chem. C, 120(2016), 6427-6434.
  22. G. O. Ngongang Ndjawa, K. R. Graham, R. Li, S.M. Conron, P. Erwin, K. W. Chou, G.F. Burkhard, K. Zhao, E. T. Hoke, M. E. Thompson, M. D. McGehee, A. Amassian, Impact of molecular orientation and spontaneous interfacial mixing on the performance of organic solar cells, Chem. Mater., 27(2015), 5597-5604.
  23. C. Zhong, J. A. Bartelt, M. D. McGehee, D. Cao, F. Huang, Y. Cao, A.J. Heeger, Influence of intermixed donor and acceptor domains on the ultrafast charge generation in bulk heterojunction materials, J. Phys. Chem. C, 119(2015), 26889-26894.
  24. B. Qi, J. Wang, Fill factor in organic solar cells, Phys. Chem. Chem. Phys., 15(2013), 8972-8982.
  25. N. A. Ran, J. A. Love, C. J. Takacs, A. Sadhanala, J.K. Beavers, S.D. Collins, Y. Huang, M. Wang, R.H. Friend, G.C. Bazan, Harvesting the full potential of photons with organic solar cells, Adv. Mater., 22(2015), 1-7.
  26. T. L. Benanti, D. Venkataraman, Organic solar cells: An overview focusing on active layer morphology, Photosynth. Res., 87(2006), 73-81.
  27. H. Hoppe, N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res., 19(2004), 1924-1945.
  28. K. M. Coakley, M. D. McGehee, Conjugated polymer photovoltaic cells, Chem. Mater., 16(2004), 4533-4542.
  29. O. Synooka, F. Kretschmer, M. D. Hager, M. Himmerlich, S. Krischok, D. Gehrig, F. Laquai, U.S. Schubert, G. Gobsch, H. Hoppe, Modification of the Active Layer/PEDOT: PSS interface by solvent additives resulting in improvement of the performance of organic solar cells, ACS Appl. Mater. Interfaces, 6(2014), 11068-11081.
  30. T. Agostinelli, T. A. Ferenczi, E. Pires, S. Foster, A. Maurano, C. Müller, A. Ballantyne, M. Hampton, S. Lilliu, M. Campoy‐Quiles, The role of alkane dithiols in controlling polymer crystallization in small band gap polymer: Fullerene solar cells, J. Polym. Sci., Part B: Polym. Phys., 49(2011), 717-724.
  31. B. Walker, A. Tamayo, D. T. Duong, X. D. Dang, C. Kim, J. Granstrom, T. Q. Nguyen, A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system, Adv. Energy Mater., 1(2011), 221-229.
  32. G. Dennler, A. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N. Sariciftci, Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells, Org. Electron., 7(2006), 229-234.
  33. A. Arias, J. MacKenzie, R. Stevenson, J. Halls, M. Inbasekaran, E. Woo, D. Richards, R. Friend, Photovoltaic performance and morphology of polyfluorene blends: a combined microscopic and photovoltaic investigation, Macromolecules, 34(2001), 6005-6013.
  34. S. M. McAfee, J. M. Topple, A. J. Payne, J. P. Sun, I. G. Hill, G. C. Welch, An electron‐deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics, Chem. Phys. Chem., 16(2015), 1190-1202.
  35. D. Chen, A. Nakahara, D. Wei, D. Nordlund, T.P. Russell, P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology, Nano Lett., 11(2010), 561-567.
  36. B. Walker, J. Liu, C. Kim, G. C. Welch, J. K. Park, J. Lin, P. Zalar, C. M. Proctor, J. H. Seo, G. C. Bazan, Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells, Energy Environ. Sci., 6(2013), 952-962.
  37. G. Li, L. Liu, F. Wei, S. Xia, X. Qian, Recent progress in modeling, simulation, and optimization of polymer solar cells, IEEE J. Photovoltaics, 2(2012), 320-340.
  38. A. Bacchieri, G. Della Cioppa, Fundamentals of clinical research: bridging medicine, statistics and operations, Springer Science & Business Media, 2007.
  39. D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, Accelerating the discovery of materials for clean energy in the era of smart automation, Nat. Rev. Mater., 3(2018), 5-20.
  40. J. D. Perea, S. Langner, M. Salvador, J. Kontos, G. Jarvas, F. Winkler, F. Machui, A. Görling, A. Dallos, T. Ameri, Combined computational approach based on density functional theory and artificial neural networks for predicting the solubility parameters of fullerenes, J. Phys. Chem. B, 120(2016), 4431-4438.
  41. J. N. Wei, D. Duvenaud, A. Aspuru-Guzik, Neural networks for the prediction of organic chemistry reactions, ACS Cent. Sci., 2 (2016) 725-732.
  42. F. Häse, S. Valleau, E. Pyzer-Knapp, A. Aspuru-Guzik, Machine learning exciton dynamics, Chem. Sci., 7(2016), 5139-5147.
  43. F. Häse, C. Kreisbeck, A. Aspuru-Guzik, Machine learning for quantum dynamics: deep learning of excitation energy transfer properties, Chem. Sci., 8 (2017) 8419-8426.
  44. F. Pereira, K. Xiao, D. A. Latino, C. Wu, Q. Zhang, J. Aires-de-Sousa, Machine learning methods to predict density functional theory B3LYP energies of HOMO and LUMO orbitals, J. Chem. Inf. Model., 57(2016), 11-21.
  45. Y. Liu, T. Zhao, W. Ju, S. Shi, Materials discovery and design using machine learning, J. Materiomics, 3(2017), 159-177.
  46. A. Aspuru-Guzik, K. Persson, Materials acceleration platform: accelerating advanced energy materials discovery by integrating high-throughput methods and artificial intelligence, mission innovation: innovation challenge 6, 2018.
  47. A. A. White, Big data are shaping the future of materials science, MRS Bull., 38(2013), 594-595.
  48. P. B. Jørgensen, M. N. Schmidt, O. Winther, Deep generative models for molecular science, Molecular informatics, 37(2018), 1700133.
  49.  E.O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, A. Aspuru-Guzik, What is high-throughput virtual screening? A perspective from organic materials discovery, Annu. Rev. Mater. Res., 45(2015), 195-216.
  50. I. Y. Kanal, S. G. Owens, J. S. Bechtel, G.R. Hutchison, Efficient computational screening of organic polymer photovoltaics, J. Phys. Chem. Lett., 4(2013), 1613-1623.
  51. E. O. Pyzer‐Knapp, K. Li, A. Aspuru‐Guzik, Learning from the harvard clean energy project: The use of neural networks to accelerate materials discovery, Adv. Funct. Mater., 25(2015), 6495-6502.
  52. I. Y. Kanal, G. R. Hutchison, Rapid computational optimization of molecular properties using genetic algorithms: searching across millions of compounds for organic photovoltaic materials, arXiv preprint arXiv:1707.02949, (2017).
  53. B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering, Sci. 361(2018), 360-365.
  54. Y. Imamura, M. Tashiro, M. Katouda, M. Hada, Automatic high-throughput screening scheme for organic photovoltaics: estimating the orbital energies of polymers from oligomers and evaluating the photovoltaic characteristics, J. Phys. Chem. C, 121(2017), 28275-28286.
  55. S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares, A. Aspuru-Guzik, Design principles and top non-fullerene acceptor candidates for organic photovoltaics, Joule, 1(2017), 857-870.
  56. R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D. G. Ha, T. Wu, Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach, Nat. Mater., 15(2016), 1120.
  57. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A .M. Brockway, A. Aspuru-Guzik, The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid, J. Phys. Chem. Lett., 2(2011), 2241-2251.
  58. E. J. Luber, J. M. Buriak, Reporting performance in organic photovoltaic devices, ACS Nano, 7(2013), 4708-4714.
  59. M. Hosseinnezhad, M. R. Saeb, S. Garshasbi, Y. Mohammadi, Realization of manufacturing dye-sensitized solar cells with possible maximum power conversion efficiency and durability, Sol. Energy, 149(2017), 314-322.
  60. A. Mellit, S.A. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Prog. Energy Combust. Sci., 34(2008), 574-632.
  61. A. Ashtiani Abdi, F. Nourmohammadian, T. Ameri, Energy level gamut, a wide-angle lens to look at photoelectronic properties of Diketopyrrolopyrrole-Benzothiadiazole based small molecules, Manuscript submitted for publication, (2018).
  62. E. J. Hughes, Evolutionary Many-Objective Optimisation: Many Once or One Many?, in:  2005 IEEE Congress on Evolutionary Computation, IEEE, Edinburgh, Scotland, 2005, pp. 222-227.
  63. K. Deb, Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, 2001.
  64. Y. Mohammadi, M. R. Saeb, A. Penlidis, Heuristic Search strategy for transforming microstructural patterns to optimal copolymerization recipes, macromol. Theory Simul., 27(2018), 1700088.
  65. B. Baghaei, M. R. Saeb, S. H. Jafari, H. A. Khonakdar, B. Rezaee, V. Goodarzi, Y. Mohammadi, Modeling and closed‐loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery, J. Appl. Polym. Sci., 134(2017), 45145.
  66. R. Po, G. Bianchi, C. Carbonera, A. Pellegrino, All That Glisters Is Not Gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells, Macromolecules, 48(2015), 453-461.
  67. J. Min, Y. N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, Y. Chen, S. A. Ponomarenko, Y. Li, C. J. Brabec, Evaluation of electron donor materials for solution‐processed organic solar cells via a novel figure of merit, Adv. Energy Mater., 7(2017), 1700465.
  68. A. Ashtiani Abdi, F. Nourmohammadian, Y. Mohammadi, M.R. Saeb, Control over power conversion efficiency of bhj solar cells: learn more from less, with artificial intelligence, Prog. Color, Colorants Coat., 12(2019), 1-14.
  69. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models, John Wiley & Sons, 2004.
  70. M. Krzywinski, N. Altman, Points of significance: visualizing samples with box plots, in, Nature Publishing Group, 2014.
  71. D. S. Yeung, I. Cloete, D. Shi, W. W. Y. Ng, Sensitivity Analysis for Neural Networks, Springer Berlin Heidelberg, 2009.
  72. S. A. Lopez, E. O. Pyzer-Knapp, G. N. Simm, T. Lutzow, K. Li, L. R. Seress, J. Hachmann, A. Aspuru-Guzik, The Harvard organic photovoltaic dataset, Scientific data, 3(2016), 160086.
  73. V. Venkatraman, R. Raju, S. P. Oikonomopoulos, B. K. Alsberg, The dye-sensitized solar cell database, J. Cheminf., 10(2018), 18-24.
  74. D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R. P. Adams, Convolutional networks on graphs for learning molecular fingerprints, in: Advances in neural information processing systems, 2015, pp. 2224-2232.
  75. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 19, April 2018, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/, DOI:10.18434/T47C7Z.