Epoxy Coatings Physically Cured with Hydroxyl-contained Silica Nanospheres and Halloysite nanotubes

Document Type : Original Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran.

2 Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.

Abstract

Epoxy coatings are usually reinforced by the use of nanofillers, but reactive nanofillers having physical tendency towards epoxide ring opening are preferable. In this work, nanosilica (SiO2) and halloysite nanotubes (HNTs) known for their hydroxyl-contained surface are used and their effects on the curing behavior of an epoxy/amine coating is compared. The spherical and tubular nanoparticles used in epoxy led to somewhat different crosslinking. Epoxy/amine systems containing equivalent amount of silica spherical and halloysite nanotube particles were compared for their cure characteristics, i.e. temperatures of starting and ending of curing reaction (TONSET and TENDSET), the exothermal peak temperature (Tp), the temperature range among which curing reaction was completed (∆T= TENDSET - TONSET) and the total heat of curing reaction (∆H). Fourier-transform infrared spectrophotometry and scanning electron microscopy analyses were used to assess formation of SiO2. Nonisothermal differential scanning calorimetry was performed at different heating rates and cure characteristics together with values of glass transition temperature of two kinds of systems containing SiO2 and HNTs were calculated, where both nanofillers revealed accelerating role in epoxy curing reaction.

Keywords


  1. G. G. Buonocore, L. Schiavo, I. Attianese, A. Borriello, Hyperbranched polymers as modifiers of epoxy adhesives, Compos. Part B., 53(2013), 187–192.
  2. X. Zeng, R. Sun, S. Yu, X. Xia, Cure kinetics of biphenyl epoxydized novolac resin, J. Poly. Eng., 30(2010), 535–548.
  3. P. Kasemsiri, A. Neramittagapong, P. Chindaprasirt, Curing Kinetic, Thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochim. Acta., 600(2015), 20-27.
  4. J. Hua, J. Shana, J. Zhaob, Z. Tong, Isothermal curing kinetics of a flame retardant epoxy resin containing DOPO investigated by DSC and rheology, Thermochim. Acta, 632(2016), 56-63
  5. P. Murias, L. Byczynski, H. Maciejewski, H. Galina, A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes, J. Thermal Anal. Calor., 122(2015), 215–226
  6. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. Echegoyen Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields, Nanomater., 7(2017), 74-79.
  7. D. R. Paula, L. M. Robeson, Polymer nanotechnology: nanocomposites, Polymer. 49(2008), 3187-3204.
  8. M. Supova, G. S. Martynkova, K. Barabaszova, Effect of nanofillers dispersion in polymer matrices: a review, Sci. Adv. Mater., 3(2011), 1-25.
  9. D. M. Marquis, E. Guillaume, C. Chivas-Joly, Properties of nanofillers in polymer, in Nanocomposites and polymers with analytical methods, 2011, InTech.

10. M. R. Saeb, H. Vahabi, M. Jouyandeh, E. Movahedifar, R. Khalili, Epoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes. Prog. Color Colorant Coat., 10(2017), 245-252

11. Z. Karami, O. M. Jazani, A. H. Navarchian, M. R. Saeb, Effect of carbon black content on curing behavior of polysulfide elastomer, Prog. Color Colorant Coat., 12(2018), 103-112.

12. P. Anithambigai, M. D. Chakravarthii, D. Mutharasu, L. Huong, T. Zahner, D. Lacey, I. Kamarulazizi, Potential thermally conductive alumina filled epoxy composite for thermal management of high power LEDs, J. Mater. Sci. Mater. Electron., 28(2017), 856-867.

13. M. Jouyandeh, O. M. Jazani, A. H. Navarchian, M. Shabanian, H. Vahabi, M. R. Saeb, Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation, Appl. Surf. Sci., 447(2018), 152-164.

14. S. Ghiyasi, M. G. Sari, M. Shabanian, M. Hajibeygi, P. Zarrintaj, M. Rallini, L. Torre, D. Puglia, H. Vahabi, M. Jouyandeh, F. Laoutid, S. M. R. Paran, M. R. Saeb, Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings, Prog. Org. Coat., 120(2018), 100-109.

15. E. Esmizadeh, G. Naderi, A. A. Yousefi, Candida Milone, Investigation of curing kinetics of epoxy resin/novel nanoclay–carbon nanotube hybrids by non-isothermal differential scanning calorimetry, J. Thermal Anal. Calorimetr., 126(2016), 771–784.

16. M. R. Saeb, F. Najafi, E. Bakhshandeh, H. A. Khonakdar, M. Mostafaiyan, C. scheffler, E. Mäder, Highly curable epoxy/MWCNTs nanocomposites: an effective approach to functionalization of carbon nanotubes, Chem. Eng. J., 259(2015), 117-125.

17. E. Yarahmadi, K. Didehban, M. Shabanian, M. R. Saeb, High-Performance starch-modified graphene oxide/epoxy nanocomposite coatings: a glimpse at cure kinetics and fracture behavior, Prog. Color Colorant Coat., 11(2018), 55-62.

18. X. He, D. Zhang, H. Li, J. Fang, L. Shi, Shape and size effects of ceria nanoparticles on the impact strength of ceria/epoxy resin composites, Particuology, 9(2011), 80-85.

19. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 112(2012), 2373-2433.

20. G. Suriati, M. Mariatti, A. Azizan, Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications, J. Mater. Sci. Mater. Electron., 22(2011), 56-63.

21. M. Shneider, L. Rapoport, A. Moshkovich, H. Dodiuk, S. Kenig, R. Tenne, A. Zak, Tribological performance of the epoxy‐based composite reinforced by WS 2 fullerene‐like nanoparticles and nanotubes. Phys. Status Soli., 210(2013), 2298-2306.

22. M. R. Saeb, E. Bakhshandeh, H. A. Khonakdar, E. Mäder, C. Scheffler, G. Heinrich, Cure kinetics of epoxy nanocomposites affected by MWCNTs functionalization: a review, Sci. World J., 2013(2013), 1-14.

23. M. Jouyandeh, S. M. R. Paran, M. Shabanian, S. Ghiyasi, H. Vahabi, M. Badawi, K. Formela, D. Puglia, M. R. Saeb, Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/ SiO2/ chitosan/imide/phenylalanine-modified nanofillers, Prog. Org. Coat., 123(2018), 10-19.

24. M. R. Saeb, H. Rastin, M. Shabanian, M. Ghaffari, G. Bahlakeh, Cure kinetics of epoxy/β-cyclodextrin-functionalized Fe3O4 nanocomposites: experimental analysis, mathematical modeling, and molecular dynamics simulation, Prog. Org. Coat., 110(2017), 172-181

25. G. Bahlakeh, M. Ghaffari, M. R. Saeb, B. Ramezanzadeh, F. D. Proft, H. Terryn, A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel: combined molecular dynamics simulations and quantum mechanics, J. Phys. Chem. C., 120(2016), 11014–11026.

26. M. R. Saeb, M. Nonahal, H. Rastin, M. Shabanian, M. Ghaffari, G. Bahlakeh, S. Ghiyasi, H. A. Khonakdarg, V. Goodarzi, P.V. P, D. Puglia, Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites, Prog. Org. Coat., 112(2017), 176-186.

27. M. Jouyandeh, O. M. Jazani, A. H. Navarchian, M. R. Saeb, High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints, J. Reinf. Plas. Compos., 35(2016), 1685–1695.

28. M. G. Sari, M. R. Saeb, M. Shabanian, M. Khaleghi, H. Vahabi, C. Vagner, P. Zarrintaj, R. Khalili, S. M. R. Paran, B. Ramezanzadeh, M. Mozafari, Epoxy/ starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior, Prog. Org. Coat., 115(2018), 143–150.

29. M. Ganjaee Sari, H. Vahabi, X. Gabrion, P. Laheurte, P. Zarrintaj, K. Formela, M. R. Saeb, An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nano-composite coatings, Prog. Org. Coat., 119(2018), 171-182.

30. M. Nonahal, H. Rastin, M. R. Saeb, M. G. Sari, M. H. Moghadam, P. Zarrintaj, B. Ramezanzadeh, Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study, Prog. Org. Coat., 114(2018), 233–243.

31. E. Yarahmadi, K. Didehban, M. G. Sari, M. R. Saeb, M. Shabanian, F. Aryanasab, P. Zarrintaj, S. M. R. Paran, M. Mozafari, M. Rallini, D. Puglia, Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings, Prog. Org. Coat., 119(2018), 194-202.

32. M. Nonahal, M. R. Saeb, S. H. Jafari, H. Rastin, H. A. Khonakdar, F. Najafi, F. Simon, Design, preparation, and characterization of fast cure epoxy/amine‐functionalized graphene oxide nanocomposites, Polym. Compos, 17(2017), 858-862.

33. T. Mahrholz, J. Stängle, M. Sinapius, Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes, Compos. Part A: Appl. Sci. Manufac., 40(2009), 235-243.

34. H. S. Jo, G. W. Lee, Investigation of mechanical and thermal properties of silica-reinforced epoxy composites by using experiment and empirical model, Mater. Today: Proceed., 4(2017), 6178-6187.

35. V. Vahedi, P. Pasbakhsh, S. P. Chai, Toward high performance epoxy/halloysite nanocomposites: new insights based on rheological, curing, and impact properties, Mater. Design, 68(2015), 42-53.

36. M. J. Saif, M. Asif, M. Naveed, K. M. Zia, M. K. Khosa, M. A. Jamal, Halloysite reinforced epoxy composites with improved mechanical properties, Polish J. Chem. Technol., 18(2016), 133-135.

37. P. Yuan, D. Tan, F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci., 112(2015), 75-93.

38. A. Beganskiene, V. Sirutkaitis, M. Kurtinaitiene, R. Juskenas, A. Kareiva, FTIR, TEM and NMR investigations of Stober slica nanoparticles, Mater. Sci., 10(2004), 287-290.

39. M. R. Saeb, M. Ghaffari, H. Rastin, H. A. Khonakdar, F. Simon, F. Najafi, V. Goodarzi, P. V. P, D. Puglia, F. H. Asl, K. Formela, Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride: competitiveness with terpolymer-modified calcium carbonate at low loading level, RSC Adv., 7(2017), 2218-2230.

40. A. Aris, A. Shojae, R. Bagheri, Cure kinetics of nanodiamond filled epoxy resin: influence of nanodiamond surface functionality, Indust, Eng. Chem. Res., 54(2015), 8954–8962.

S. A. Rakha, R. Raza, A. Munir, Reinforcement effect of nanodiamond on properties of epoxy matrix, Polym. Compos., 34(2013), 811-818.