Assessing the Effect of Nylon 66 and Alumina on Mechanical and Thermal Properties of Epoxy-based Adhesives Through Taguchi Experimental Design Analysis

Document Type : Original Article

Authors

1 Department of Chemical Engineering, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran.

2 Department of Mechanical and Energy Engineering, Shahid Beheshty University, P.O. Box: 81746-73441, Tehran, Iran

Abstract

The effect of alumina and tough nylon 66 on microparticles’ presence the mechanical and thermal properties of epoxy adhesives is assessed here. In order to distribute the adhesive formulation components, in a uniform manner a mechanical stirrer is applied. The effect a combined percentage of nylon66 at (20،30،40 pph) and alumina micro-particles 20 μ (50,60,70 pph) selected based on Taguchi experimental design method on the mechanical and thermal properties of the adhesives is assessed. The tensile test results reveal that the sample containing 20 pph nylon 66 and 70 pph alumina micro particles has the highest Young’s modulus and tensile strength compared to other examples designed in Taguchi Table and Sample containing 30 pph nylon66 and 50 pph alumina micro particles has the highest degree of toughness compared to other specimens. The results of TGA reveal that the sample with the highest mechanical properties has a degradation startup temperature and more residual coal than pure epoxy. All this is due to the presence of nylon 66 that contains active hydrogen which in turn can increase cross-linking and degree of networking high and ultimately a higher thermal stability than the epoxy matrix.  The results obtained from the FT-IR test indicate that amide groups of nylon66 are capable of interaction with epoxy rings.

Keywords


  1. M. R. Saeb, H. Vahabi, M. Jouyandeh, E. Movahedifar, R. Khalili, Epoxy-based flame retardant nanocomposite coatings: comparison between functions of expandable graphite and halloysite nanotubes, Prog. Color Colorants Coat., 10(2017), 245-252.
  2. E. Yarahmadi, K. Didehban, M. Shabanian, M. R. Saeb, High-performance starch-modified graphene oxide/epoxy nanocomposite coatings: a glimpse at cure kinetics and fracture behavior, Prog. Color Colorants Coat., 11(2018), 55-62.
  3. L. M. Raj, M. M. Raj, P. N. Dave, Glass fiber reinforced composites of phenolic–urea–epoxy resin blends, J. Saudi Chem. Soc., 16(2012), 241-246.
  4. Z. Karami, O. Moini Jazani, A. H. Navarchian, M. R. Saeb, Effect of carbon black content on curing behavior of polysulfide elastomer, Prog. Color Colorants Coat., 12(2018), 103-112.
  5. E. Petrie, Epoxy adhesive formulations, McGraw Hill Professional, 2005.
  6. A.J. Kinloch, J.H. Lee, A.C. Taylor, S. Sprenger, C. Eger, D. Egan, Toughening structural adhesives via nano-and micro-phase inclusions, J. Adhesion, 79(2003), 867-873.
  7. F. Ghadami,, M.R. Dadfar, M. Kazazi, Hot-cured epoxy-nanoparticulate-filled nanocomposites: fracture toughness behavior, Eng. Fracture Mechanics, 162(2016), 193-200.
  8. A. Q. Barbosa, L. F. Da Silva, A. Öchsner, J. Abenojar, J. C. Del Real, Influence of the size and amount of cork particles on the impact toughness of a structural adhesive, J. Adhesion, 88(2012), 452-470.
  9. P.K. Ghosh, S. Halder, M.S. Goyat, G. Karthik, Study on thermal and lap shear characteristics of epoxy adhesive loaded with metallic and non-metallic particles, J. Adhesion, 89(2013), 55-75.
  10. M. Jouyandeh, O. Moini Jazani, A.H. Navarchian, M. R. Saeb, High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints, J. Reinforced Plastics Comp., 35(2016), 1685-1695.
  11. T. Zhou, X. Wang, M. Gu, D. Xiong, Study on mechanical, thermal and electrical characterizations of nano-SiC/epoxy composites, Polymer, 41(2009), 51-57.
  12. K. Natarajan, R.P.  Kumar, P.V. Reddy, N. M. N. Gowda, R. M. V. G. K. Rao, Thermal and toughness property studies on a polybenzimidazole‐modified epoxy resin system, Polymer Int., 49(2000), 1321-1323.
  13. A. Sturiale, A. Vazquez, A. Cisilino, L.B.  Manfredi, Enhancement of the adhesive joint strength of the epoxy–amine system via the addition of a resole-type phenolic resin, Int. J. Adhesion Adhesives, 27(2007), 156-164.
  14. S. Rimdusit, H. Ishida, Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins., Polymer, 41(2000), 7941-7949.
  15. C. S. Tyberga, K. Bergerona, M. Sankarapandiana, P. Shiha, A. C. Loosa, D. A. Dillarda, J.E. McGratha, Structure-property relationships of void-free phenolic-epoxy matrix materials. J. S. Rifflea, U. Sorathiab, Polymer, 41(2000), 5053-5062.
  16. İ. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, Z. Demir, The influence of micro-and nano-filler content on the mechanical properties of epoxy composites, J. Mech. Eng., 61(2015), 601-609.
  17. H. S. Jo, G. W. Lee, Investigation of mechanical and thermal properties of silica-reinforced epoxy composites by using experiment and empirical model, Mater. Today: Proc., 4(2017), 6178-6187.
  18. J. M. Wernik, S. A. Meguid, On the mechanical characterization of carbon nanotube reinforced epoxy adhesives, Mater. Design, 59(2014), 19-32.
  19. M. Ekrem, Ö. S. Şahin, S. E.  Karabulut, A. Avcı, Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives, J. Comp. Mater., 0021998317726147. (2017)
  20. ASTM Standards, 2014, ASTM D5868, ASTM International.  Available from: http://www.astm. org/Standard/. [8 september 2014].
  21. ISO Standards, 2014, ISO 527-1,2,3, International Organization for Standardization. Available from: www.iso.org/iso/. [8 september 2014].
  22. Clark Jr, R. L. (1996). Influence of the interphase on the mechanical properties of nylon 66 composites. Virginia Polytechnic Institute and State University, Department of Materials Engineering Science, Doctorate Dissertation.
  23. J. Bragg, A. Alvarez-Castillo, M. Trejo-Duran, V. Castano, Preparation and properties of (epoxy resin)/ (nylon 66 oligomer) blends, Chem. Chem. Technol., 3(2009), 77-83.
  24. A. Dorigato, A. Pegoretti, The role of alumina nanoparticles in epoxy adhesives, J. Nanoparticle Res., 13(2011), 2429-2441.
  25. E. M. Petrie, Handbook of adhesives and sealants, McGraw-Hill Professional, 2000.
  26. B. S. Gorton, Interaction of nylon polymers with epoxy resins in adhesive blends, J. Appl. Polymer Sci., 8(1964), 1287-1295.
  27. B. C. Smith, Fundamentals of Fourier transform infrared spectroscopy. CRC press, 2011.
  28. P. R. Griffiths, J. A.  De Haseth, Fourier transform infrared spectrometry, John Wiley & Sons., 2007