Corrosion Inhibition of Mild Steel in HCl Solution by 2-acetylpyrazine: Weight Loss and DFT Studies on Immersion Time and Temperature Effects

Document Type : Original Article

Authors

1 Department of Materials Engineering, Diyala University, P.O. Box: 32001, Diyala, Iraq

2 Department of Electromechanical Engineering, University of Technology, P.O. Box: 10001, Baghdad, Iraq

3 Department of Production Engineering and Metallurgy, University of Technology, P.O. Box: 10001, Baghdad, Iraq

4 College of Engineering, University of Warith Al-Anbiyaa, Karbalaa, P.O. Box: 56001, Iraq

5 Department of Medical Instruments Engineering Techniques, Al-Farahidi University, P.O. Box:10001, Baghdad, Iraq

6 Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia (UKM), P.O. Box: 43000, Selangor, Malaysia

7 Energy and Renewable Technology Centre, University of Technology, P.O. Box: 10001, Baghdad, Iraq

8 Department of Chemistry, College of Science, Al-Nahrain University, P.O. Box: 10001, Baghdad, Iraq

Abstract

This study systematically explores the corrosion inhibition potential of 2-acetylpyrazine for mild steel in a hydrochloric acid (HCl) solution, employing a comprehensive approach that integrates experimental weight loss measurements and Density Functional Theory (DFT) calculations. Investigating inhibitory performance across varying immersion times, inhibitor concentrations, and temperatures, our research aims to elucidate the corrosion inhibition mechanism. Numerical findings highlight a substantial inhibitory efficiency of 92.7 % at an inhibitor concentration of 0.5 mM, an immersion time
of 5 hours, and a temperature of 303 K. Remarkably, the efficiency increases to 
98.1 % after extending the immersion time to 48 hours at 303 K with the same inhibitor concentration. Furthermore, we demonstrate the temperature's impact on inhibition efficiency, reaching 97.3 % at 333 K with an immersion time of 5 hours and an inhibitor concentration of 0.5 mM. The Langmuir model, applied to adsorption isotherms, provides valuable insights into the adsorption behavior of 2-acetylpyrazine on mild steel surfaces. Additionally, scanning electron microscope (SEM) results indicate the formation of a protective film on the steel surface in the presence of the studied inhibitors. This combined experimental and computational approach not only enhances our comprehension of the corrosion inhibition mechanism but also emphasizes the practical viability of 2-acetylpyrazine as an effective and temperature-sensitive inhibitor in HCl environments. These findings contribute significantly to advancing corrosion mitigation strategies with potential implications for industrial applications.

Keywords

Main Subjects


  1. Mahdi BS, Abbass MK, Mohsin MK, Al-Azzawi WK, Hanoon MM, Al-Kaabi MH, Shaker LM, Al-Amiery AA, Isahak WN, Kadhum AA, Takriff MS. Corrosion inhibition of mild steel in hydrochloric acid environment using terephthaldehyde based on Schiff base: Gravimetric, thermodynamic, and computational studies. Molecules. 2022; 27(15):4857. https://doi.org/ 10.3390/molecules27154857. 
  2. Jawad Q, S. Zinad D, Dawood Salim R, A Al-Amiery A, Sumer Gaaz T, Takriff MS, H. Kadhum AA. Synthesis, characterization, and corrosion inhibition potential of novel thiosemicarbazone on mild steel in sulfuric acid environment. Coatings. 2019; 9(11):729. https://doi.org/10.3390/coatings9110729. 
  3. Al-Baghdadi SB, Noori FT, Ahmed WK, Al-Amiery AA. Thiadiazole as a potential corrosion inhibitor for mild steel in 1 M HCl. J Adv Electrochem. 2016; 18:67-9. 
  4. Resen AM, Hanoon M, Salim RD, Al-Amiery AA, Shaker LM, Kadhum AA. Gravimetrical, theoretical, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl) pyridine on mild steel in hydrochloric acid. KOM-Corrosion Mater Protection J. 2020; 64(4):122-30. https://doi. org/10.2478/kom-2020- 0018. 
  5. Junaedi S, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB. Inhibition effects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in hydrochloric acid solution together with quantum chemical studies. International journal of molecular sciences. 2013; 14(6):11915-28. https://doi. org/10.3390/ijms140611915. 
  6. Solomon MM, Uzoma IE, Olugbuyiro JA, Ademosun OT. A censorious appraisal of the oil well acidizing corrosion inhibitors. J Petroleum Sci Eng. 2022; 215:110711. https://doi.org/10.1016/j.petrol.2022. 1107112. 
  7. Wang D, Li Y, Chen B, Zhang L. Novel surfactants as green corrosion inhibitors for mild steel in 15 % HCl: Experimental and theoretical studies. Chem Eng J. 2020;402:126219. https://doi.org/10.1016/j.cej.2020. 126219. 
  8. El-Haitout B, Selatnia I, Lgaz H, Al-Hadeethi MR, Lee HS, Chaouiki A, Ko YG, Ali IH, Salghi R. Exploring the feasibility of new eco-friendly heterocyclic compounds for establishing efficient corrosion protection for N80 steel in a simulated oil well acidizing environment: From molecular-level prediction to experimental validation. Colloid Surf A: Physicochem Eng Asp. 2023; 656:130372. https://doi. org/10.1016/j.colsurfa.2022.130372. 
  9. Tiu BD, Advincula RC. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism. React Funct Poly. 20151; 95:25-45. https://doi.org/10.1016/j.reactfunctpolym. 2015. 08.006. 
  10. Alamri AH. Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines-An overview. Eng Failure Anal. 2020; 116:104735.https://doi.org/10.1016/j.engfailanal.2020. 104735. 
  11. Chauhan DS, Mazumder MJ, Quraishi MA, Ansari KR. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. Internat J Biological Macromol. 2020; 158:127-38. https://doi.org/10.1016/j.ijbiomac. 2020.04.200. 
  12. Şafak S, Duran B, Yurt A, Türkoğlu G. Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corr Sci. 2012; 54:251-9. https://doi.org/10.1016/j. corsci.2011.09.026. 
  13. Heakal FE, Elkholy AE. Gemini surfactants as corrosion inhibitors for carbon steel. J Mol Liq. 2017; 230:395-407.https://doi.org/10.1016/j.molliq.2017. 01. 047. 
  14. Farsak M, Keleş H, Keleş M. A new corrosion inhibitor for protection of low carbon steel in HCl solution. Corr Sci. 2015; 98:223-32. https://doi.org/10. 1016/j.corsci.2015.05.036.
  15. Alamiery AA, Isahak WN, Aljibori HS, Al-Asadi HA, Kadhum AA. Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-n-(2, 5-dimethyl-pyrrol-1-yl) benzoylamine in 1.0 m HCl solution. International J Corrosion Scale Inhib. 2021; 10(2):700-13. https://doi.org/10.17675/2305-6894-2021-10-2-14. 
  16. Al-Baghdadi SB, Hashim FG, Salam AQ, Abed TK, Gaaz TS, Al-Amiery AA, Kadhum AA, Reda KS, Ahmed WK. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies. Res Phys. 2018;8: 1178-84. https://doi.org/10.1016/j.rinp.2018. 02.007. 
  17. Al-Azzawi WK, Al Adily AJ, Sayyid FF, Al-Azzawi RK, Kzar MH, Jawoosh HN, Al-Amiery AA, Kadhum AA, Isahak WN, Takriff MS. Evaluation of corrosion inhibition characteristics of an N-propionanilide derivative for mild steel in 1 M HCl: Gravimetrical and computational studies. Int J Corr Scale Inhib. 2022; 11(3):1100-14. https://doi.org/10.17675/2305-6894-2022-11-3-12. 
  18. Mustafa AM, Sayyid FF, Betti N, Hanoon MM, Al-Amiery A, Kadhum AA, Takriff MS. Inhibition evaluation of 5-(4-(1H-pyrrol-1-yl) phenyl)-2-mercapto-1, 3, 4-oxadiazole for the corrosion of mild steel in an acidic environment: thermodynamic and DFT aspects. Tribologia-Finnish J Tribol. 2021; 38(3-4):39-47. https://doi.org/10.30678/fjt.105330.
  19. Abdulsahib YM, Eltmimi AJ, Alhabeeb SA, Hanoon MM, Al-Amiery AA, Allami T, Kadhum AA. Experimental and theoretical investigations on the inhibition efficiency of N-(2, 4-dihydroxytoluen-eylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in hydrochloric acid. Intern J Corr Scale Inhib. 2021; 10(3):885-99. https://doi.org/10.17675/ 2305-6894-2021-10-3-3. 
  20. Khudhair AK, Mustafa AM, Hanoon MM, Al-Amiery A, Shaker LM, Gazz T, Mohamad AB, Kadhum AH, Takriff MS. Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl. Prog Color Colorant Coat. 2022;15(2):111-22. https://doi.org/10.30509/ PCCC. 2021.166815.1111. 
  21. Zinad DS, Salim RD, Betti N, Shaker LM, Al-Amiery AA. Comparative investigations of the corrosion inhibition efficiency of a 1-phenyl-2-(1-phenylethylidene) hydrazine and its analog against mild steel corrosion in hydrochloric acid solution. Prog Color Colorant Coat. 2022; 15(1):53-63. https://doi.org/10.30509/pccc.2021.166786.1108.
  22. Salim RD, Betti N, Hanoon M, Al-Amiery AA. 2-(2, 4-Dimethoxybenzylidene)-N-phenylhydrazinecarbothioamide as an efficient corrosion inhibitor for mild steel in acidic environment. Prog Color Colorant Coat. 2022; 15(1):45-52. https://doi.org/10.30509/pccc.2021.166775.1105 
  23. Al-Amiery AA, Shaker LM, Kadhum AH, Takriff MS. Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency. Mater Today: Proceedings. 2021; 42:2968-73. https://doi.org/10.1016/j.matpr.2020.12.807. 
  24. Resen AM, Hanoon MM, Alani WK, Kadhim A, Mohammed AA, Gaaz TS, Kadhum AA, Al-Amiery AA, Takriff MS. Exploration of 8-piperazine-1-ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution. Intern J Corr Scale Inhib. 2021; 10(1):368-87. https://doi.org/10.17675/2305-6894-2021-10-1-21. 
  25. Hanoon MM, Resen AM, Al-Amiery AA, Kadhum AA, Takriff MS. Theoretical and experimental studies on the corrosion inhibition potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl) Methylene) hydrazinecarbo-thioamide for mild steel in 1 M HCl. Prog Colorant Coat. 2022; 15(1):11-23. https://doi.org/10.30509/ PCCC.2020.166739.1095. 
  26. Hashim FG, Salman TA, Al-Baghdadi SB, Gaaz T, Al-Amiery A. Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid. Tribologia-Finnish J Tribology. 2020; 37(3-4):45-53. https://doi.org/10.30678/fjt.95510.
  27. Alamiery A, Shaker LM, Allami T, Kadhum AH, Takriff MS. A study of acidic corrosion behavior of Furan-Derived schiff base for mild steel in hydrochloric acid environment: Experimental, and surface investigation. Materials Today: Proceedings. 2021; 44:2337-41. https://doi.org/10.1016/j.matpr. 2020.12.431. 
  28. Al-Baghdadi SB, Al-Amiery AA, Gaaz TS, Kadhum AA. Terephthalohydrazide and isophthalo-hydrazide as new corrosion inhibitors for mild steel in hydrochloric acid: Experimental and theoretical approaches. KOM–Corr Mater Protect J. 2021; 65(1):12-22. https://doi.org/10.2478/kom-2021-0002. 
  29. Hanoon MM, Resen AM, Shaker LM, Kadhum AA, Al-Amiery AA. Corrosion investigation of mild steel in aqueous hydrochloric acid environment using 
    n-(Naphthalen-1yl)-1-(4-pyridinyl) methanimine complemented with antibacterial studies. Biointerface Res Appl Chem. 2021; 11(2):9735-43. https://doi.org/ 10. 33263/BRIAC112.97359743. 
  30. Al-Baghdadi S, Gaaz TS, Al-Adili A, Al-Amiery AA, Takriff MS. Experimental studies on corrosion inhibition performance of acetylthiophene thio-semicarbazone for mild steel in HCl complemented with DFT investigation. I J Low-Carbon Technol. 2021; 16(1):181-8. https://doi.org/10.1093/ijlct/ctaa050. 
  31. Al-Amiery AA. Anti-corrosion performance of 2-isonicotinoyl-n-phenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations. Surf Rev Lett. 2021; 28(03):2050058. https://doi.org/10.1142/S0218625X20500584. 
  32. Alamiery AA. Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies. Biointerface Res Appl Chem. 2022; 12(2):1561-8. https://doi.org/10.33263/BRIAC122.15611568. 
  33. Alamiery A. Short report of mild steel corrosion in 0.5 m H2SO4 by 4-ethyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide. J. Tribol. 2021; 30:90-9. 
  34. Alamiery AA, Wan Isahak WN, Takriff MS. Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide: Gravimetrical, adsorption and theoretical studies. Lubricants. 2021; 9(9):93. https://doi.org/10.3390/lubricants9090093. 
  35. Dawood MA, Alasady ZM, Abdulazeez MS, Ahmed DS, Sulaiman GM, Kadhum AA, Shaker LM, Alamiery AA. The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: Complemented with antibacterial studies. Int J Corros Scale Inhib. 2021; 10(4):1766-82. https://doi.org/10.17675/2305-6894-2021-10-4-25. 
  36. Alamiery A. Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1, 3, 4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations. Mater Sci Energy Technol. 2021; 4:398-406. https://doi.org/10.1016/j.mset.2021.09. 002. 
  37. Alamiery AA. Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies. Mater Sci Energy Technol. 2021; 4:263-73. https://doi.org/10. 1016/ j.mset.2021.07.004. 
  38. Alamiery AA, Isahak WN, Aljibori HS, Al-Asadi HA, Kadhum AA. Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-n-(2, 5-dimethyl-pyrrol-1-yl) benzo-ylamine in 1.0 m HCl solution. Intern J Corr Scale Inhib. 2021; 10(2):700-13. https://doi.org/10. 17675/ 2305. 
  39. Abdulazeez MS, Abdullahe ZS, Dawood MA, Handel ZK, Mahmood RI, Osamah S, Kadhum AH, Shaker LM, Al-Amiery AA. Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss, DFT studies and antibacterial studies. Int J Corr Scale Inhib. 2021; 10(4):1812-28. https://doi.org/10.17675/2305-6894-2021-10-4-27 
  40. Salman AZ, Jawad QA, Ridah KS, Shaker LM, Al-Amiery AA. Selected bis-thiadiazole: synthesis and corrosion inhibition studies on mild steel in HCl environment. Surf Review Lett. 2020; 27(12): 2050014.https://doi.org/10.1142/S0218625X20500146. 
  41. Al-Amiery A, Al-Majedy Y, Al-Duhaidahawi D, Kadhum AA, Mohamad AB. Green antioxidants: synthesis and scavenging activity of coumarin-thiadiazoles as potential antioxidants complemented by molecular modeling studies. Free Radic Antioxidants. 2016; 6(2):173-7. https://doi.org/ 10. 5530/fra.2016.2.7. 
  42. ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, 2011, 1–9. 
  43. NACE International, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93°C (200°F), TM0193-2016-SG, 2000.
  44. Alamiery A, Mahmoudi E, Allami T. Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies. Intern J Corr Scale Inhib. 2021; 10(2):749-65. https://doi.org/10. 17675/ 2305-6894-2021-10-2-17. 
  45. Manamela KM, Murulana LC, Kabanda MM, Ebenso EE. Adsorptive and DFT studies of some imidazolium based ionic liquids as corrosion inhibitors for zinc in acidic medium. Intern J Electrochem Sci. 2014; 9(6):3029-46.
  46. Gaussian09 RA. 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc., Wallingford CT. 2009; 121:150-66.
  47. Koopmans T. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica. 1933; 1:104-13. https://doi.org/10.1016/ S0031-8914(34)90011-2.
  48. Eltmimi AJ, Alamiery A, Allami AJ, Yusop RM, Kadhum AH, Allami T. Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment. Intern J Corr Scale Inhibition. 2021; 10(2):634-48. https://doi.org/10.17675/2305-6894- 2021-10-2-10.
  49. Singh AK, Pandey AK, Banerjee P, Saha SK, Chugh B, Thakur S, Pani B, Chaubey P, Singh G. Eco-friendly disposal of expired anti-tuberculosis drug isoniazid and its role in the protection of metal. J Environ Chem Eng. 2019; 7(2):102971. https://doi. org/ 10. 1016/j.jece.2019.102971.
  50. Benabdellah M, Tounsi A, Khaled KF, Hammouti B. Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as corrosion inhibitor for mild steel in hydrochloric acid solutions. Arabian J Chem. 2011; 4(1):17-24. https://doi.org/10.1016/j.arabjc.2010.06.010.
  51. Haldhar R, Prasad D, Saxena A, Singh P. Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study. Mater Chem Front. 2018; 2(6):1225-37. https://doi. org/10.1039/C8QM00120K.
  52. Singh AK, Shukla SK, Ebenso EE. Cefacetrile as corrosion inhibitor for mild steel in acidic media. Intern J Electrochem Sci. 2011; 6(11):5689-700.
  53. Al-Bghdadi SB, Hanoon MM, Odah JF, Shaker LM, Al-Amiery AA. Benzylidene as efficient corrosion inhibition of mild steel in acidic solution. Multidiscip Digital Publish Institute Proce. 2019; 41(1):27. https://doi.org/10.3390/ecsoc-23-06472 
  54. Mahdi BS, Aljibori HS, Abbass MK, Al-Azzawi WK, Kadhum AH, Hanoon MM, Isahak WN, Al-Amiery AA, Majdi HS. Gravimetric analysis and quantum chemical assessment of 4-aminoantipyrine derivatives as corrosion inhibitors. Int J Corr Scale Inhib. 2022; 11(3):1191-213. https://doi.org/10.17675/2305-6894-2022-11-3-17. 
  55. Alamiery AA. Study of corrosion behavior of N'-(2-(2-oxomethylpyrrol-1-yl) ethyl) piperidine for mild steel in the acid environment. Biointerface Res Appl Chem. 2022; 12(3):3638-46. https://doi.org/10.33263/ BRIAC123.36383646. 
  56. Alamiery A, Mohamad AB, Kadhum AA, Takriff MS. Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data in Brief. 2022; 40:107838. https://doi.org/10.1016/j.dib.2022.107838. 
  57. Mustafa AM, Sayyid FF, Betti N, Shaker LM, Hanoon MM, Alamiery AA, Kadhum AA, Takriff MS. Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl) phenyl)-1, 3, 4-triazole. South African J Chem Eng. 2022; 39(1):42-51. https://doi.org/10.1016/ j.sajce.2021.11.009.
  58. Al-Azzawi WK, Salih SM, Hamood AF, Al-Azzawi RK, Kzar MH, Jawoosh HN, Shakier LM, Al-Amiery A, Kadhum AA, Isahak WN, Takriff MS. Adsorption and theoretical investigations of a Schiff base for corrosion inhibition of mild steel in an acidic environment. Int J Corros Scale Inhib. 2022; 11(3):1063-82. https://doi.org/10.17675/2305-6894-2022-11-3-10. 
  59. Mahmood D, Al-Okbi AK, Hanon MM, Rida KS, Alkaim AF, Al-Amiery AA, Kadhum A, Kadhum AA. Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J Eng Appl Sci. 2018; 13(11):3952. https://doi.org/10.3923/ JEASCI.2018.3952.3959. 
  60. Alobaidy AH, Kadhum A, Al-Baghdadi SB, Al-Amiery AA, Kadhum AA, Yousif E, Mohamad AB. Eco-friendly corrosion inhibitor: experimental studies on the corrosion inhibition performance of creatinine for mild steel in HCl complemented with quantum chemical calculations. Intern J Electrochem Sci. 2015; 10(5):3961-72. https://doi.org/10.1016/S1452-3981 (23) 06594-X. 
  61. Al-Amiery A, Shaker LM, Kadhum AA, Takriff MS. Synthesis, characterization and gravimetric studies of novel triazole-based compound. Intern J Low-Carbon Technol. 2020; 15(2):164-70. doi: 10.1093/ijlct/ctz067. 
  62. Junaedi S, Kadhum AA, Al-Amiery AA, Mohamad AB, Takriff MS. Synthesis and characterization of novel corrosion inhibitor derived from oleic acid: 2-Amino 5-Oleyl-1, 3, 4-Thiadiazol (AOT). Intern J Electrochem Sci. 2012; 7(4):3543-54. https://doi.org/ 10.1016/S1452-3981(23)13976-9. 
  63. Ibraheem H, Al-Majedy Y, Al-Amiery A. 4-thiadiazole: The biological activities. System Rev Pharm. 2018; 9(1):36-40. https://doi.org/10.5530/ srp.2018.1.7. 
  64. Al-Amiery A, Al-Majedy Y, Al-Duhaidahawi D, Kadhum AA, Mohamad AB. Green antioxidants: synthesis and scavenging activity of coumarin-thiadiazoles as potential antioxidants complemented by molecular modeling studies. Free Rad Antioxid. 2016; 6(2):173-7. https://doi.org/10.5530/fra.2016.2.7. 
  65. Al-Amiery AA, Al-Temimi AA, Sulaiman GM, Aday HA, Kadhum AA, Mohamad AB. Synthesis, antimicrobial and antioxidant activities of 5-((2-oxo-2 H-chromen-7-yloxy) methyl)-1, 3, 4-thiadiazol-2 (3 H)-one derived from umbelliferone. Chem Natural Comp. 2013; 48:950-4. https://doi.org/10.1007 /s10600-013-0436-0. 
  66. Annon IA, Abbas AS, Al-Azzawi WK, Hanoon MM, Alamiery A, Isahak WN, Kadhum AA. Corrosion inhibition of mild steel in hydrochloric acid environment using thiadiazole derivative: Weight loss, thermodynamics, adsorption and computational investigations. South African J Chem Eng. 2022; 41(1):244-52. https://doi.org/10.1016/j.sajce.2022. 06. 011 
  67. Aljibori HS, Alwazir AH, Abdulhadi S, Al-Azzawi WK, Kadhum AA, Shaker LM, Al-Amiery AA, Majdi HS. The use of a Schiff base derivative to inhibit mild steel corrosion in 1 M HCl solution: a comparison of practical and theoretical findings. Int J Corr Scale Inhib. 2022; 11(4):1435-55. https://doi.org/10.17675/ 2305- 6894-2022-11-4-2.
  68. Aljibori HS, Abdulzahra OH, Al Adily AJ, Al-Azzawi WK, Al-Amiery AA, Kadhum AA. Recent progresses in thiadiazole derivatives as corrosion inhibitors in hydrochloric acid solution. Int J Corr Scale Inhib. 2023; 12(3):842-66. https://doi.org/10.17675/2305-6894-2023-12-3-3.
  69. Shaker LM, Alamiery A, Isahak WN, Al-Azzawi WK. Corrosion in solar cells: challenges and solutions for enhanced performance and durability. J Optics. 2023; 30:1-5. https://doi.org/10.1007/s12596-023-01277-9.
  70. Jembere AL, Genet MB. Effect of low calcination temperature on the corrosion inhibition performance of biomass based Na2SiO3 on mild steel immersed in tap water. Cogent Engineering. 2023; 10(1):2165631. https://doi.org/10.1080/23311916.2023.2165631.
  71. Alrefaee SH, Rhee KY, Verma C, Quraishi MA, Ebenso EE. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J Mol Liq. 2021; 321:114666.https://doi.org/10.1016/j.molliq.2020.114666. 
  72. Haldhar R, Prasad D, Bahadur I, Dagdag O, Berisha A. Evaluation of Gloriosa superba seeds extract as corrosion inhibition for low carbon steel in sulfuric acidic medium: A combined experimental and computational studies. J Mol Liquids. 2021; 323:114958.https://doi.org/10.1016/j.molliq.2020.114958. 
  73. Muthukrishnan P, Jeyaprabha B, Prakash P. Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion. Arabian J Chem. 2017; 10:S2343-54. https://doi.org/10.1016/j.arabjc.2013.08.011.
  74. Sharma SK, Peter A, Obot IB. Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review. J Anal Sci Technol. 2015; 6(1):1-6. https://doi.org/10.1186/ s40543-015-0067-0. 
  75. Adejo SO, Yiase SG, Leke L, Onuche M, Atondo MV, Uzah TT. Corrosion studies of mild steel in sulphuric acid medium by acidimetric method. Intern J Corr Scale Inhibition. 2019; 8(1):50-61. 
  76. Adejo SO. Proposing a new empirical adsorption isotherm known as Adejo-Ekwenchi isotherm. J Appl Chem. 2014; 6(5):66-71. https://doi.org/10.9790/ 5736-0656671.
  77. Siaka AA, Eddy NO, Idris SO, Mohammed A, Elinge CM, Atiku FA. FTIR spectroscopic information on the corrosion inhi-bition potentials of ampicillin in HCl solution. Innov Sci Eng. 2012; 2:41-8.
  78. Al-Senani GM. Corrosion inhibition of carbon steel in acidic chloride medium by Cucumis sativus (cucumber) peel extract. Int J Electrochem Sci. 2016; 11(1):291-302. https://doi.org/10.1016/S1452-3981 (23) 15844-5.
  79. Ho YS, Porter JF, McKay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 2002; 141:1-33.
  80. Popova A, Christov M, Vasilev A, Zwetanova A. Mono-and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part I: Gravimetric and voltammetric results. Corr Sci. 2011; 53(2):679-86.
  81. Mohammed A, Aljibori HS, Al-Hamid MAI, Al-Azzawi WK, Kadhum AAH, Alamiery A. N-Phenyl-N′-[5-phenyl-1,2,4-thiadiazol-3-yl]thiourea: corrosion inhibition of mild steel in 1 M HCl. Int J Corr Scale Inhib. 2024; 13(1):38-78. https://doi.org/10.17675/ 2305-6894-2024-13-1-3.
  82. Al-Moubaraki AH, Awaji H. 1-X-4-[4´-(-OCH 3)-Styryl] pyridinium iodides, potent inhibitors for stainless steel corrosion in 2 M HCl acid solutions. Intern J Corr Scale Inhib. 2020; 9(2):460-501. https://doi.org/10.17675/2305-6894-2020-9-2-5.
  83. Hoseizadeh AR, Danaee I, Maddahy MH. Thermodynamic and adsorption behaviour of vitamin B1 as a corrosion inhibitor for AISI 4130 steel alloy in HCl solution. Zeitschrift Für Physikalische Chemie. 2013; 227(4):403-18.
  84. Hammouti B, Zarrouk A, Al-Deyab SS, Warad I. Temperature Effect, Activation Energies and Thermodynamics of Adsorption of ethyl 2-(4-(2-ethoxy-2-oxoethyl)-2-p-Tolylquinoxalin-1 (4H)-yl) Acetate on Cu in HNO3. Orient J Chem. 2011; 27(1):23.
  85. Amjad Z, Landgraf RT, Penn JL. Calcium sulfate dihydrate (gypsum) scale inhibition by PAA, PAPEMP, and PAA/PAPEMP blend. Int J Corr Scale Inhib. 2014; 3(1):35-47. https://doi.org/10.17675/ 2305-6894-2014-3-1-035-047.
  86. Valle-Quitana JC, Dominguez-Patiño GF, Gonzalez-Rodriguez JG. Corrosion inhibition of carbon steel in 0.5 M H2SO4 by phtalocyanine blue. Intern Scholar Res Notices. 2014; 2014.
  87. Zhao P, Liang Q, Li Y. Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl. Appl Surf Sci. 2005; 252(5):1596-607.
  88. Sakamoto K, Ohno-Okumura E. Syntheses and functional properties of phthalocyanines. Materials. 2009; 2(3):1127-79.
  89. De La Torre G, Vázquez P, Agullo-Lopez F, Torres T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev. 2004; 104(9):3723-50.
  90. García-Sánchez MA, Rojas-González F, Menchaca-Campos EC, Tello-Solís SR, Quiroz-Segoviano RI, Diaz-Alejo LA, Salas-Bañales E, Campero A. Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. Molecules. 2013; 18(1):588-653.
  91. Olasunkanmi LO, Obot IB, Kabanda MM, Ebenso EE. Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J Phys Chem C. 2015; 119(28):16004-19.
  92. Pesha T, Monama GR, Hato MJ, Maponya TC, Makhatha ME, Ramohlola KE, Molapo KM, Modibane KD, Thomas MS. Inhibition effect of phthalocyaninatocopper (II) and 4-tetranitro (phthalocyaninato) copper (II) inhibitors for protection of aluminium in acidic media. Intern J Electrochem Sc. 2019; 14(1):137-49. https://doi.org/10.20964/ 2019.01.17.
  93. Dibetsoe M, Olasunkanmi LO, Fayemi OE, Yesudass S, Ramaganthan B, Bahadur I, Adekunle AS, Kabanda MM, Ebenso EE. Some phthalocyanine and naphthalocyanine derivatives as corrosion inhibitors for aluminium in acidic medium: Experimental, quantum chemical calculations, QSAR studies and synergistic effect of iodide ions. Molecules. 2015; 20(9):15701-34.
  94. Xu J, Wang Y, Zhang Z. Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions. J Phys Chem C. 2012; 116(9):5689-99. https://doi.org/10.1021/jp210488t
  95. Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids. J American Chem Soc. 1917; 39(9):1848-906. https://doi.org/10.1021/ja02254a006.
  96. Lagrenee M, Mernari B, Bouanis M, Traisnel M, Bentiss F. Study of the mechanism and inhibiting efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media. Corr Sci. 2002; 44(3):573-88. https://doi.org/10.1016/ S0010- 938X(01)00075-0.
  97. Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surfaces A: Physicochem Eng Asp. 2005; 264(1-3):17-28. https://doi.org/10.1016/j. colsurfa. 2005.03.027.
  98. Noor EA, Al-Moubaraki AH. Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4 [4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys. 2008; 110(1):145-54. https://doi.org/10.1016/j. matchemphys.2008.01.028.
  99. Yadav M, Kumar S, Sinha RR, Bahadur I, Ebenso EE. New pyrimidine derivatives as efficient organic inhibitors on mild steel corrosion in acidic medium: electrochemical, SEM, EDX, AFM and DFT studies. J Mol Liq. 2015; 211:135-45. https://doi.org/10.1016/ j.molliq.2015.06.063.
  100. Gao G, Liang C. Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass. Electrochim Acta. 2007; 52(13):4554-9. https://doi. org/10.1016/j.electacta.2006.12.058.
  101. Stern M, Geary AL. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957; 104(1):56. https://doi.org/10.1149/1.2428496.
  102. Amin MA, Ahmed MA, Arida HA, Arslan T, Saracoglu M, Kandemirli F. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series–Part II. Temperature effect, activation energies and thermodynamics of adsorption. Corr Sci. 2011; 53(2): 540-8. https://doi.org/10.1016/j.corsci.2011. 02.007.
  103. Khaled KF, Al-Qahtani MM. The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: Chemical, electrochemical and theoretical studies. Mater Chem Phys. 2009; 113(1):150-8. https://doi.org/10.1016/j.matchemphys.2008.07.060
  104. Hmamou DB, Salghi R, Zarrouk A, Zarrok H, Touzani R, Hammouti B, El Assyry A. Investigation of corrosion inhibition of carbon steel in 0.5 M H2SO4 by new bipyrazole derivative using experimental and theoretical approaches. J Environ Chem Eng. 2015; 3(3):2031-41. https://doi.org/10.1016/j.jece.2015.03.018
  105. Ma H, Chen S, Liu Z, Sun Y. Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: a Hartree Fock study. J Mol Struct: Theochem. 2006; 774(1-3):19-22. https://doi.org/ 10.1016/j.theochem.2006.06.044.
  106. Mourya P, Singh P, Tewari AK, Rastogi RB, Singh MM. Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corr Sci. 2015; 95:71-87. https://doi.org/10.1016/ j. corsci.2015.02.034.
  107. Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Sci. 2008; 50(11):2981-92.https://doi.org/10.1016/j.corsci.2008. 08.043.
  108. Sastri VS, Perumareddi JR. Molecular orbital theoretical studies of some organic corrosion inhibitors. Corr. 1997; 53(08). https://doi.org/10.5006/ 1.3290294.
  109. Stoyanova A, Petkova G, Peyerimhoff SD. Correlation between the molecular structure and the corrosion inhibiting effect of some pyrophthalone compounds. Chem Phys. 2002; 279(1):1-6. https://doi.org/10.1016/ S0301-0104(02)00408-1.
  110. Benali O, Larabi L, Traisnel M, Gengembre L, Harek Y. Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4. Appl Surf Sci. 2007; 253(14):6130-9.https://doi.org/10.1016/j.apsusc.2007. 01.075.
  111. Oyebamiji AK, Adeleke BB. Quantum chemical studies on inhibition activities of 2, 3-dihydroxypropyl-sulfanyl derivative on carbon steel in acidic media. International J Corr Scale Inhib. 2018;7(4):498-508. https://doi.org/10.17675/2305-6894-2018-7-4-2.
  112. Sayin K, Karakaş D. Quantum chemical studies on the some inorganic corrosion inhibitors. Corr Sci. 2013; 77:37-45. https://doi.org/10.1016/j.corsci.2013.07.023
  113. Laarej K, Bouachrine M, Radi S, Kertit S, Hammouti B. Quantum chemical studies on the inhibiting effect of bipyrazoles on steel corrosion in HCl. E J Chem. 2010; 7(2):419-24. https://doi.org/10.1155/ 2010/ 273206.
  114. Obot IB, Obi-Egbedi NO, Umoren SA. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corr Sci. 2009; 51(2):276-82. https://doi. org/10.1016/j.corsci.2008.11.013.
  115. Iofa ZA, Tomashova GN. The joint action of sulfides and organic compounds on the acid corrosion and brittleness of iron. Z Fiz Khim. 1960; 34:1036-43. . 
  116. Arab ST, Noor EA. Inhibition of acid corrosion of steel by some S-alkylisothiouronium iodides. Corrosion. 1993; 49(2):122-9. https://doi.org/10.5006/ 1.3299206. 
  117. Migahed MA. Electrochemical investigation of the corrosion behaviour of mild steel in 2 M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide. Mater Chem Phys. 2005; 93(1):48-53. https://doi.org/10.1016/j.matchemphys.2005.02.003.
  118. Asefi D, Arami M, Sarabi AA, Mahmoodi NM. The chain length influence of cationic surfactant and role of nonionic co-surfactants on controlling the corrosion rate of steel in acidic media. Corr Sci. 2009; 51(8): 1817-21.https://doi.org/10.1016/j.corsci.2009 .05.007. 
  119. Asefi D, Arami M, Mahmoodi NM. Comparing chain length effect of single chain and gemini surfactants on corrosion inhibition of steel in acid. ECS Transactions. 2011; 35(17):89. https://doi.org/10.1149/1.3641293. 
  120. Yoo SH, Kim YW, Shin J, Kim NK, Kim JS. Effects of the chain length of tris (carboxyalkylamino) triazine on corrosion inhibition properties. Bulletin Korean Chem Soc. 2015; 36(1):346-55. https://doi.org/10. 1002/bkcs.10090. 
  121. Kaskah SE, Pfeiffer M, Klock H, Bergen H, Ehrenhaft G, Ferreira P, Gollnick J, Fischer CB. Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors. Surf Inter. 2017; 9:70-8. https://doi.org/10.1016/j.surfin. 2017. 08.002. 
  122. El Achouri M, Infante MR, Izquierdo F, Kertit S, Gouttaya HM, Nciri B. Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium. Corr Sci. 2001; 43(1):19-35. https://doi.org/10.1016/S0010-938X(00)00063-9. 
  123. Negm NA, Tawfik SM. Characterization, surface properties and biological activity of some synthesized anionic surfactants. J Indust Eng Chem. 2014; 20(6): 4463-72. https://doi.org/10.1016/j.jiec.2014.02.018. 
  124. Negm NA, Badawi AM, Zaki MF, Salem MA. Corrosion inhibition properties of some novel n-methyl diethanolammonium bromide cationic surfactants. Tesce, 2004; 30(2): 1-17.
  125. McCafferty E, Hackerman N. Double layer capacitance of iron and corrosion inhibition with polymethylene diamines. J Electrochem Soc. 1972; 119(2):146. https://doi.org/10.1149/1.2404150.
  126. Hadisaputra S, Purwoko AA, Ilhamsyah I, Hamdiani S, Suhendra D, Nuryono N, Bundjali B. A combined experimental and theoretical study of (E)-ethyl 3-(4-methoxyphenyl) acrylate as corrosion inhibitor of iron in 1 M HCl solutions. Intern J of Corr Scale Inhib. 2018; 7(4):633-47. https://doi.org/10.1107/ S0108270195016027. 
  127. Senet P. Chemical hardnesses of atoms and molecules from frontier orbitals. Chem Phys Lett. 1997; 275(5-6):527-32. https://doi.org/10.1016/S0009- 2614(97) 00799-9. 
  128. Lukovits I, Kalman E, Zucchi F. Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion. 2001; 57(1):3-8. https://doi. org/10.5006/1.3290328.
  129. Hadisaputra S, Hamdiani S, Kurniawan MA, Nuryono N. Influence of macrocyclic ring size on the corrosion inhibition efficiency of dibenzo crown ether: a density functional study. Indon J Chem. 2017; 17(3):431-8. https://doi.org/10.22146/ijc.26667.
  130. Hadisaputra S, Canaval LR, Pranowo HD, Armunanto R. Theoretical study on the extraction of alkaline earth salts by 18-crown-6: roles of counterions, solvent types and extraction temperatures. Indon J Chem. 2014; 14(2):199-208. https://doi.org/10.22146/ijc.715
  131. Al-Amiery, AA, Al-Azzawi WK. Mannich bases as corrosion inhibitors: An extensive review. J Mol Struct. 2023; 1294: 136421. https://doi.org/ 10.1016/ j.molstruc.2023.136421.
  132. El-Shamy AM, El-Hadek MA, Nassef AE, El-Bindary RA. Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt. % NaCl solution. J Chem. 2020; 2020. https://doi. org/10.1016/j.physe.2014.10.035.
  133. Obi-Egbedi NO, Essien KE, Obot IB, Ebenso EE. 1,2-Diaminoanthraquinone as corrosion inhibitor for mild steel in hydrochloric acid: weight loss and quantum chemical study. Intern J Electrochem Sci. 2011; 6(4):913-30.
  134. Özcan M, Dehri İL, Erbil M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure. Appl Surf Sci. 2004; 236(1-4):155-64.
  135. Lgaz H, Anejjar A, Salghi R, Jodeh S, Zougagh M, Warad I, Larouj M, Sims P. Characterization of corrosion products formed on carbon steel in hydrochloric acid medium by 4-(dimethylamino)-1-(6-methoxy-6-oxohexyl) pyridinium bromide. Int J Corr Scale Inhib. 2016; 5(2):209-31. https://doi.org/ 10.17675/2305-6894-2016-5-3-3.
  136. Ansari KR, Ramkumar S, Chauhan DS, Salman M, Nalini D, Srivastava V, Quraishi MA. Macrocyclic compounds as green corrosion inhibitors for aluminium: electrochemical, surface and quantum chemical studies. Intern J Corr Scale Inhib. 2018; 7(3):443-59. https://doi.org/10.17675/2305-6894-2018 -7-3-13.
  137. El-Shamy AM, El-Hadek MA, Nassef AE, El-Bindary RA. Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt. % NaCl solution. J Chem. 2020; 9212491. https://doi. org/10.1155/2020/9212491. 
  138. Vorobyova V, Chygyrynets O, Skiba M, Trus I, Frolenkova S. Grape pomace extract as green vapor phase corrosion inhibitor. Chem Chem Technol. 2018; 12(3):410-8. https://doi.org/10.23939/chcht12.03.410 
  139. Vorobyova V, Chygyrynets O, Skiba M. 4-hydroxy-3-methoxybenzaldehyde as a volatile inhibitor on the atmospheric corrosion of carbon steel. J Chem Technol Metal. 2018; 53(2):336-45. 
  140. Vorobyova VI, Skiba MI, Trus IM. Apricot pomaces extract (prunus armeniaca l.) as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. Intern J Corr Scale Inhib. 2019;8(4): 1060-83. https://doi.org/10.1016/j.matpr.2018.05.114.
  141. Bentiss F, Mernari B, Traisnel M, Vezin H, Lagrenée M. On the relationship between corrosion inhibiting effect and molecular structure of 2, 5-bis (n-pyridyl)-1, 3, 4-thiadiazole derivatives in acidic media: Ac impedance and DFT studies. Corr Sci. 2011; 53(1): 487-95. https://doi.org/10.1016/j.corsci.2010.09.063. 
  142. Victoria SN, Prasad R, Manivannan R. Psidium guajava leaf extract as green corrosion inhibitor for mild steel in phosphoric acid. Intern J Electrochem Sci. 2015; 10(3):2220-38. http://www.electrochemsci. org/ papers/vol10/100302220.pdf.
  143. Vorobyova V, Skіba M. Apricot cake extract as corrosion inhibitor of steel: chemical composition and anti-corrosion properties. Chem J Moldova. 2019; 14 (1):77-87.https://doi.org/10.17675/2305-6894-2017-6-4-8. 
  144. Vorobyova, V., Overchenko, T. and Skiba, M., Experimental and theoretical investigations of anti-corrosive properties of thymol. Chem Chem Technol, 2019;13(2):261-268.https://doi.org/10.23939/ chcht13. 02.261. 
  145. Vorobyova V, Skiba M, Chygyrynets O. A novel eco-friendly vapor phase corrosion inhibitor of mild steel. Pigm Resin Technol. 2019; 48(2):137-47. https://doi. org/10.1108/PRT-03-2018-0025.
  146. Chyhyrynets OE, VorobIova VI. Anticorrosion properties of the extract of rapeseed oil cake as a volatile inhibitor of the atmospheric corrosion of steel. Mater Sci. 2013; 49:318-25. https://doi.org/10. 1007/ s11003-013-9617-z .
  147. Chyhyrynets OE, Fateev YF, Vorobiova VI, Skyba MI. Study of the mechanism of action of the isopropanol extract of rapeseed oil cake on the atmospheric corrosion of copper. Mater Sci. 2016; 51: 644-51. https://doi.org/10.1007/s11003-016-9886-4.
  148. Vorobyova V, Chygyrynets O, M. Skiba, T. Zhuk, Kurmakova, Bondar P. A comprehensive study of grape cake extract and its active components as effective vapour phase corrosion inhibitor of mild steel, Intern J Corr Scale Inhib. 2018; 7:185-202. https://doi.org/10.17675/2305-6894-2018-7-2-6. 
  149. Vorobyova V, Chygyrynets O, Skiba M, Trus I, Frolenkova S. Grape pomace extract as green vapor phase corrosion inhibitor. Chem Chem Technol. 2018; 12(3):410-8. https://doi.org/10.23939/chcht12.03.410. 
  150. Chyhyrynets OE, VorobIova VI. Anticorrosion properties of the extract of rapeseed oil cake as a volatile inhibitor of the atmospheric corrosion of steel. Mater Sci. 2013; 49:318-25. https://doi.org/10.1007/ s11003-013-9617-z.