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his study systematically explores the corrosion inhibition potential of 2-

acetylpyrazine for mild steel in a hydrochloric acid (HCl) solution, 

employing a comprehensive approach that integrates experimental weight 

loss measurements and Density Functional Theory (DFT) calculations. 

Investigating inhibitory performance across varying immersion times, inhibitor 

concentrations, and temperatures, our research aims to elucidate the corrosion 

inhibition mechanism. Numerical findings highlight a substantial inhibitory 

efficiency of 92.7 % at an inhibitor concentration of 0.5 mM, an immersion time 

of 5 hours, and a temperature of 303 K. Remarkably, the efficiency increases to  

98.1 % after extending the immersion time to 48 hours at 303 K with the same 

inhibitor concentration. Furthermore, we demonstrate the temperature's impact on 

inhibition efficiency, reaching 97.3 % at 333 K with an immersion time of 5 hours 

and an inhibitor concentration of 0.5 mM. The Langmuir model, applied to 

adsorption isotherms, provides valuable insights into the adsorption behavior of 2-

acetylpyrazine on mild steel surfaces. Additionally, scanning electron microscope 

(SEM) results indicate the formation of a protective film on the steel surface in the 

presence of the studied inhibitors. This combined experimental and computational 

approach not only enhances our comprehension of the corrosion inhibition 

mechanism but also emphasizes the practical viability of 2-acetylpyrazine as an 

effective and temperature-sensitive inhibitor in HCl environments. These findings 

contribute significantly to advancing corrosion mitigation strategies with potential 

implications for industrial applications. Prog. Color Colorants Coat. 17 (2024), 

333-350© Institute for Color Science and Technology. 
 

 

 

 

 

 

 

 

 

1. Introduction 

Corrosion stands as a pervasive challenge across diverse 

industrial sectors, jeopardizing the structural integrity 

and lifespan of metallic components and structures [1-4]. 

Among the materials susceptible to corrosion, mild steel 

faces particular vulnerability due to its extensive use in 

T 
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various industrial applications [5-9]. The prevalent use 

of hydrochloric acid (HCl) in many industrial 

environments compounds the degradation of mild steel 

surfaces, intensifying the corrosive impact [10-13]. In 

the pursuit of robust corrosion mitigation strategies, 

organic inhibitors have emerged as promising solutions, 

especially those featuring heteroatoms within their 

molecular structures [14-17]. Hydrochloric acid finds 

extensive application in industries such as chemical 

processing, metal cleaning, and acid pickling, playing a 

pivotal role in various processes [18, 19]. However, the 

aggressive nature of HCl towards metals, notably mild 

steel, underscores the imperative for the development of 

effective corrosion inhibition techniques [20]. Inorganic 

inhibitors, while possessing certain merits, exhibit 

notable disadvantages [21-23]. These inhibitors, often 

metal-based, can be prone to precipitation and can 

introduce undesirable ions into the system, potentially 

causing secondary issues. Additionally, their 

effectiveness may be compromised under fluctuating 

environmental conditions [24]. This prompts the 

exploration of organic inhibitors, a class gaining 

prominence due to its distinct advantages. Organic 

inhibitors, particularly those incorporating heteroatoms 

in their molecular structures, have demonstrated 

remarkable corrosion inhibiting properties [25, 26]. The 

inclusion of heteroatoms, such as nitrogen and  

oxygen, enhances the inhibitor's electron density and 

facilitates stronger interactions with metal surfaces. 

Organic inhibitors, in contrast to their inorganic 

counterparts, are often more stable and effective under 

diverse environmental conditions [27, 28]. The presence 

of heteroatoms in organic inhibitors contributes 

significantly to their inhibitory performance. These 

heteroatoms influence the electronic structure of the 

inhibitor, affecting its electron-donating or accepting 

capabilities [29, 30]. Furthermore, molecules with 

double bonds and resonance structures enhance the 

stability of the inhibitor on the metal surface. The 

conjugation and delocalization of electrons in such 

systems contribute to a more robust protective layer, 

thus improving inhibition efficiency [31-36]. 

In recent years, the adoption of Density Functional 

Theory (DFT) has gained prominence in corrosion 

inhibition research [37-39]. Offering a robust theoretical 

framework, DFT facilitates an in-depth exploration of 

the electronic structure and properties of molecules, 

enabling a comprehensive investigation into the 

interactions between inhibitors and metal surfaces. This 

computational approach has proven invaluable in 

predicting and elucidating the inhibitory performance of 

organic compounds, guiding experimental studies 

toward more effective corrosion inhibitors. This research 

endeavors to explore the corrosion inhibiting capabilities 

of 2-acetylpyrazine, an organic compound with 

heteroatoms, for mild steel in HCl solution. By 

combining experimental weight loss measurements and 

DFT studies, our goal is to unravel the intricate interplay 

between the inhibitor and the metal surface [40, 41]. The 

study encompasses a systematic investigation of 

immersion time, inhibitor concentration, and 

temperature effects to comprehensively evaluate the 

performance of 2-acetylpyrazine (Figure 1) as a 

corrosion inhibitor. The utilization of adsorption 

isotherms, with a specific focus on the Langmuir model, 

enhances our understanding of the adsorption behavior 

and efficiency of the inhibitor. The novelty of this work 

lies in its holistic approach, bridging experimental and 

computational methodologies to gain deeper insights 

into the corrosion inhibition mechanism of 2-

acetylpyrazine under industrially relevant conditions. 

This research not only contributes to the fundamental 

understanding of corrosion processes but also holds 

practical implications for the development of effective 

and sustainable corrosion inhibition strategies in 

industrial applications. 

 

2. Experimental  

2.1. Materials and reagents 

All materials and reagents utilized in this investigation 

were procured from Sigma-Aldrich/Malaysia. A 1 M 

HCl solution served as the corrosive medium for the 

experiments. The inhibitor, 2-acetylpyrazine, was 

employed at concentrations ranging from 0.1 to 1.0 

mM. Mild steel samples, characterized by their 

chemical composition through X-ray fluorescence 

spectrometry, were employed for corrosion studies. 

Silicon carbide served as the abrasive material for 

sample preparation. 

 

 
Figure 1: Chemical structure of 2-acetylpyrazine. 
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2.2. Sample preparation 

Mild steel samples were prepared following the ASTM 

G1-03 protocol [42, 43]. Prior to immersion in the 

corrosive environment, samples underwent mechanical 

polishing to achieve a smooth finish using silicon 

carbide abrasive paper. Subsequently, samples were 

cleansed with double-distilled water and acetone to 

eliminate surface contaminants before thorough drying. 

 

2.3. Weight loss measurements 

Weight loss measurements were conducted to assess 

the corrosion rate of mild steel in the presence of 2-

acetylpyrazine. Prepared mild steel samples were 

immersed in a 1 M HCl solution containing varying 

inhibitor concentrations (0.1, 0.2, 0.3, 0.4, 0.5, and 1 

mM). Experiments were executed at different time 

intervals (1, 5, 10, 24, and 48 hours) and temperatures 

(303, 313, 323, and 333 K), adhering to the NACE 

TM0169/G31 protocol. The corrosion rate (CR) was 

calculated using equation 1 [43, 44]: 
 

C   W  dt⁄  (1) 
 

where   represents the weight loss of the mild 

steel sample, a is the sample area, d is the density of 

mild steel, and t is the immersion time. 

The inhibition efficiency (IE %) was determined 

using equation 2: 
 

IE  [ -C (i) C o
⁄ ]     (2) 

 

where   ( ) is the corrosion rate in the presence of 

the inhibitor, and     is the corrosion rate in the 

absence of the inhibitor. The degree of surface 

cover ge (θ) due to inhibitor  dsorption w s c lcul ted 

using equation 3 [42-45]: 
 

θ   -C (i) C o
⁄  (3) 

 

2.4. Density functional theory (DFT) 

Density Functional Theory (DFT) calculations were 

conducted using Gaussian 09 software [46]. The 

B3LYP method with the "6-31G++(d,p)" basis set was 

employed to explore the molecular interactions 

between 2-acetylpyrazine and the mild steel surface. 

Koopmans theory [47] was utilized to estimate the 

energy of the Highest Occupied Molecular Orbital 

(EHOMO) and the Lowest Unoccupied Molecular Orbital 

(ELUMO). Electroneg tivity (χ)  nd chemic l h rdness 

(η) were calculated using equations 4 and 5:  

  
   

 
 (4) 

 

  
   

 
 (5) 

 

The softness (σ) w s obt ined by t king the 

reciprocal of the chemical hardness as shown in 

equation 6:  
 

(σ 
 

η
) (6) 

 

Addition lly, the ch rge tr nsfer (ΔN) between the 

mild steel surface and the inhibitor was determined 

using equation 7 [47]:  
 

 N (χ
Fe

-χ
inh
)  (η

Fe
 η

inh
)   (7) 

 

For the special case of metals where     is 

significantly larger than     , equation 8 was applied:  
 

   
      

 (    )
 (8) 

 

2.5. Adsorption isotherm studies 

Adsorption isotherm studies were conducted to 

elucidate the adsorption behavior of 2-acetylpyrazine 

on the mild steel surface. These isotherms were 

constructed by plotting the degree of surface coverage 

(θ)  g inst the inhibitor concentr tion [48, 49]. 

 

3. Results and Discussion 

3.1. Weight loss measurements 

The investigation into the corrosion inhibition properties 

of 2-acetylpyrazine for mild steel in HCl solution 

commenced with a thorough examination of weight loss 

measurements. These measurements provided crucial 

insights into the corrosion rate and inhibition efficiency 

under varying concentrations, immersion times, and 

temperatures. 

 

3.1.1. Effect of inhibitor concentration 

The corrosion rate and inhibition efficiency of mild steel 

in the presence of 2-acetylpyrazine were assessed 

through weight loss measurements, offering crucial 

insights into the inhibitor's performance at various 

concentrations. Figure 2 portrays the corrosion rate and 

inhibition effectiveness during a 5-hour immersion 

period. The results showcase a noteworthy escalation in 

inhibition efficiency with increasing inhibitor 

concentration. At the optimum concentration of 0.5 mM, 
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Figure 2: CR and IE % of mild steel in HCl with and 

without the inhibitor after a 5-hour immersion period at 
303 K. 

 

2-acetylpyrazine demonstrated the highest inhibition 

efficiency of 92.7 %, indicating its robust corrosion 

inhibitory properties. This phenomenon is attributed to 

the formation of a protective layer on the metal surface, 

which becomes more substantial and effective with 

higher inhibitor concentrations [50-53]. The protective 

layer acts as a barrier, impeding direct contact between 

the metal surface and the corrosive environment, 

resulting in a deceleration of the corrosion process. 

Notably, the concentration of 0.5 mM was identified as 

optimal for establishing a resilient protective layer on the 

mild steel surface [54]. However, it is crucial to consider 

that excessively high inhibitor concentrations may lead 

to saturation of adsorption sites on the metal surface, 

potentially limiting further adsorption and yielding 

diminishing returns in inhibition efficiency beyond a 

certain point [55]. Moreover, the protective layer formed 

is not permanent, undergoing desorption over time and 

reducing inhibition efficiency. 

 

3.1.2. Effect of immersion periods 

To explore the impact of immersion duration on 

corrosion inhibition, weight loss measurements were 

conducted at varying time intervals (1, 5, 10, 24, and 48 

hours) at a constant temperature of 303 K. Figure 3 

illustrates a substantial increase in inhibition efficiency 

within the initial 5 hours of immersion, reaching a peak 

of 98.1 % at 48 hours. This escalation suggests that 2-

acetylpyrazine efficiently forms a protective layer during 

the initial immersion, hindering corrosive agents and 

retarding the corrosion process [56, 57]. Extended 

immersion durations allow for additional adsorption and 

organization of inhibitor molecules on the mild steel 

surface, enhancing the protective layer's integrity. The 

observed time-dependent effectiveness underscores the 

significance of adequate immersion periods in 

establishing a robust protective layer, critical for 

prolonged corrosion protection in acidic environments 

[58-62]. 

 

3.1.3. Effect of temperatures 

To examine the influence of temperature on corrosion 

inhibition, weight loss measurements were conducted at 

temperatures ranging from 303 to 333 K, maintaining an 

inhibitor concentration of 0.5 mM. Figure 4 reveals an 

increase in inhibition efficiency with rising temperature, 

reaching 97.3 % at 333 K. At lower temperatures (303 

K), the inhibitor demonstrated significant efficiency, 

which further improved with elevated temperatures.  
 

 
Figure 3: A comparison of CR and IE % in hydrochloric 

acid solutions with and without the inhibitor for 1, 5, 10, 
24, and 48 h immersion time at different temperatures. 

 

 
Figure 4: Comparison of    and IE% in hydrochloric 

acid solution with and without the inhibitor during a 5-
hour immersion at various temperature. 
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The temperature-dependent behavior can be attributed to 

the phenomenon of enhanced molecular activity and 

increased collision frequency at higher temperatures [63-

65]. As the temperature rises, the kinetic energy of the 

molecules in the solution increases, leading to more 

vigorous interactions between the inhibitor molecules 

and the mild steel surface. This heightened activity 

facilitates greater adsorption of inhibitor molecules onto 

the metal surface, forming a more robust protective layer 

[66-69]. Additionally, the accelerated molecular 

movement disrupts the diffusion of corrosive species 

towards the metal surface, further contributing to the 

increased inhibition efficiency at elevated temperatures. 

Moreover, at higher temperatures, the thermodynamic 

aspects of the adsorption process become more 

favorable. The increased temperature provides additional 

thermal energy, enabling the inhibitor molecules to 

overcome activation barriers and adsorb onto the metal 

surface more effectively. This results in a more stable 

and organized protective layer, leading to a higher 

inhibition efficiency [70-74]. 

In summary, the weight loss measurements provide 

valuable insights into the temperature-dependent 

behavior of 2-acetylpyrazine as a corrosion inhibitor 

for mild steel in HCl solution, emphasizing the 

increased effectiveness at elevated temperatures [75-

77]. The observed temperature dependence underscores 

the importance of considering the operational 

temperature conditions in real-world applications, 

where fluctuations may impact the inhibitor's 

performance. This temperature sensitivity enhances the 

practical utility of 2-acetylpyrazine as a corrosion 

inhibitor, showcasing its potential for effective 

corrosion protection in environments characterized by 

varying temperature conditions. Further studies could 

delve into the molecular mechanisms underlying the 

temperature-dependent behavior, providing a more 

comprehensive understanding of the corrosion 

inhibition process [78-82]. 

 

3.2. Adsorption isotherm analysis 

Adsorption isotherm analysis was conducted to unravel 

the adsorption behavior of 2-acetylpyrazine on the mild 

steel surface. Among the diverse adsorption isotherms 

considered, the Langmuir isotherm emerged as the 

most fitting model for elucidating the inhibitor's 

adsorption process. The Langmuir isotherm assumes 

homogeneous surface adsorption with uniform 

adsorption sites, and its equation (equation 9) is given 

by [83, 84]: 
 

     ⁄  (    )
     (9) 

 

Where Cinh is the concentr tion of the inhibitor, θ is 

the degree of surface coverage, Kads is the adsorption 

equilibrium constant, and C is a constant linked to 

inhibitor-adsorbent interactions. 

The experimental data were fitted to the Langmuir 

equation (Figure 5), and the obtained correlation 

coefficient (R2) value approached 1. This high R2 value 

underscores the excellent fit between the experimental 

data and the Langmuir model, affirming the accuracy of 

the Langmuir isotherm in describing inhibitor adsorption 

on the mild steel surface [85]. To comprehensively 

assess the model fits, we have included the R2 values for 

other adsorption isotherms in Figure 5, highlighting the 

superiority of the Langmuir model. 

Based on the R2 values, it is evident that the 

Langmuir adsorption isotherm provides the best fit for 

our data, indicating its supremacy in describing the 

adsorption behavior of 2-acetylpyrazine on the mild steel 

surface. The slope value of the Langmuir plot and the 

intercept value elucidate the adsorption characteristics. 

The slope represents the adsorption equilibrium constant 

(Kads), signifying the affinity of the inhibitor for the 

metal surface. A higher Kads value suggests stronger 

adsorption and a more stable inhibitor-metal surface 

interaction. The intercept value corresponds to the 

constant C, related to inhibitor-adsorbent interactions.  

 

 

 
Figure 5: Langmuir adsorption isotherm model. 
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A non-zero intercept implies limited adsorption at very 

low inhibitor concentrations, likely due to the 

availability of only a restricted number of adsorption 

sites [86-88]. The Langmuir isotherm analysis provides 

insights into the thermodynamics of inhibitor adsorption. 

The calculated standard free energy of adsorption 

(     
 ) (equation 10) ranged from -38.15 kJ.mol⁻¹, 

indicating a spontaneous and favorable adsorption 

process. 
 

     
       (        ) (10) 

 

Where R is the universal gas constant, T is the 

absolute temperature, and    is the natural logarithm 

[89]. 

The calculated      
  values align with literature 

reports [90-93] for the adsorption process of the inhibitor 

"2-acetylpyrazine" on the mild steel surface, suggesting 

a thermodynamically favorable and spontaneous 

adsorption. The negative      
  indicates an exothermic 

process, releasing energy upon adsorption, driven by 

attractive interactions between the inhibitor molecules 

and the metal surface. The calculated      
  value of -

38.15 KJ.mol
-1

 falls within the range reported for 

chemisorption processes, indicating robust and stable 

interactions between the inhibitor and the metal surface. 

However, considering the broader range of -40 to -20 

KJ.mol
-1

 that includes values for physisorption, it is 

plausible that the adsorption of "2-acetylpyrazine" on the 

mild steel surface involves a combination of both 

physisorption and chemisorption mechanisms [94-97]. 

This nuanced understanding of the adsorption process 

enriches our comprehension of 2-acetylpyrazine 's 

performance as a corrosion inhibitor and opens avenues 

for further exploration into the intricate interplay 

between the inhibitor and the metal surface. 

 

3.3. SEM analysis.  

The differences that occur on the tested coupon surface 

were examined in 1 M HCl in the without and with 2-

acetylpyrazine after a 5 h exposure period and are 

presented in Figures 6 a and 6 b. The coupon surface 

exposed in the HCl solution without the addition of 

inhibitor observes obvious corrosion holes on the tested 

coupon surface owning to generalized corrosion 

damage affected by the acidic solution. The corrosion 

damage is seen to be missing from the coupon surface 

in the presence of 2-acetylpyrazine in the acid solution 

(Figure 6 b). The tested coupon surface immersed in a 

corrosive medium with the 2-acetylpyrazine is 

remarked to be quite similar to that of the polished. 

This implies that the shielding film of the inhibitor 

molecules on the steel surface represents a barrier 

against corrosive solution attack. 

 

3.4. DFT 

In this quantum chemical analysis at the B3LYP/6-

311G(d,p) level, critical parameters were computed for 

2-acetylpyrazine molecules in the gas phase. These 

parameters provide valuable insights into the electronic 

properties and reactivity of 2-acetylpyrazine as a 

corrosion inhibitor in the gas phase, enriching our 

understanding of its corrosion inhibition mechanism and 

its potential for practical applications in industrial 

settings [46, 98-100]. The optimized structure and 

frontier molecular orbitals (MOs) of the 2-acetylpyrazine 

molecule are illustrated in Figure 7.  

 

 
Figure 6: SEM photographs of low-carbon steel in 1 M HCl solution exposed for 5 h. (a) without inhibitor, (b) with 0.5 mM 

2-acetylpyrazine. 

 

 

https://www.tandfonline.com/doi/full/10.1080/21870764.2018.1439608#F0008
https://www.tandfonline.com/doi/full/10.1080/21870764.2018.1439608#F0008
https://www.tandfonline.com/doi/full/10.1080/21870764.2018.1439608#F0008
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Figure 7: The optimized structure and frontier MOs of 

2-acetylpyrazine molecule. 

 

 

These numerical values provide a detailed 

understanding of the electronic structure and reactivity 

of 2-acetylpyrazine in the gas phase. The energy gap 

( E) signifies the st bility of the molecule, with a 

value of 1.035 eV indicating a relatively stable 

structure. The electroneg tivity (χ) of -5.074 eV 

suggests a moderate electron-attracting ability. Based 

on t ble  , the softness (σ) of  .966 indic tes   degree 

of polarizability in the molecule,  nd the h rdness (η) 

of 0.5185 reflects its resistance to charge transfer. The 

c lcul ted  N p r meter, representing the tr nsferred 

electrons between the mild steel surface and the 

inhibitor, is -0.1893. This negative value implies that 

electrons are transferred from the inhibitor to the metal 

surface, indicating a charge donation process during 

the adsorption. These numerical results contribute to a 

comprehensive understanding of the molecular 

properties of 2-acetylpyrazine, crucial for elucidating 

its corrosion inhibition mechanism and potential 

applications in corrosion protection strategies. 

 

Table 1: DFT variables for 2-acetylpyrazine molecules 

in gas phase. 

Parameter Value (eV) 

EHOMO (Highest Occupied 

Molecular Orbital Energy) 
-5.592 

ELUMO (Lowest Unoccupied 

Molecular Orbital Energy) 
-4.557 

 E (Energy G p) 1.035 

Electroneg tivity (χ) -5.074 

Softness (σ) 0.966 

H rdness (η) 0.5185 

 N (Tr nsferred Electrons) -0.1893 

 

 

 

3.5. Mulliken charges 

Understanding the interplay between the inhibiting 

efficiency of a corrosion inhibitor and atomic charges, 

particularly those derived from quantum chemical 

calculations like Mulliken charges, is crucial for 

unraveling the corrosion inhibition mechanism. These 

charges offer valuable insights into the electron density 

distribution within a molecule, influencing interactions 

between inhibitor molecules and the metal surface and, 

consequently, impacting inhibition efficiency. The 

following key aspects shed light on this intricate 

relationship [101, 102]. 

1. Coordination Bonds and Adsorption: Corrosion 

inhibitors often establish coordination bonds with 

metal atoms on the metal surface. These bonds, 

involving lone pairs of electrons from inhibitor 

atoms (e.g., oxygen or nitrogen) interacting with 

metal cations (e.g., Fe
2+

 or Fe
3+

), significantly 

influence adsorption. A robust coordination bond 

enhances inhibitor adsorption, leading to a more 

effective protective layer on the metal surface and, 

consequently, higher inhibition efficiency [103-

105]. 

2. Mulliken Charges and Electron Donor/Acceptor 

Ability: Mulliken charges provide insights into the 

electron density surrounding each atom in the 

inhibitor molecule. Positive Mulliken charges 

indicate electron-deficient atoms acting as electron 

acceptors, while negative charges denote electron-

rich atoms serving as electron donors. In corrosion 

inhibition, atoms capable of donating electrons to 

the metal surface form strong bonds, contributing to 

enhanced inhibition efficiency. Conversely, 

electron-deficient atoms may engage in 

coordination bonds, further bolstering adsorption 

and inhibition effectiveness [106-100]. 

3. Charge Transfer Complexes: In certain instances, 

inhibitor molecules form charge transfer complexes 

with metal cations on the metal surface. These 

complexes involve electron transfer between the 

inhibitor and the metal, leading to the creation of a 

stable surface layer. The efficacy of charge transfer 

complexes hinges on the electronic properties of 

both the inhibitor and the metal surface, with strong 

interactions significantly improving inhibition 

efficiency [111-115]. 

4. Electronic Structure and Energy Levels: The 

electronic structure, characterized by parameters 

like the Highest Occupied Molecular Orbital 
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(HOMO) and Lowest Unoccupied Molecular 

Orbital (LUMO) energies, plays a pivotal role in 

inhibitor adsorption behavior. Lower LUMO 

energies signify the inhibitor's enhanced ability to 

accept electrons, making it more adept at forming 

coordination bonds or charge transfer complexes 

with metal atoms on the surface [116-120]. 

In summary, the inhibiting efficiency of a corrosion 

inhibitor intricately ties into atomic charges, 

coordination bonds, and electronic properties of the 

inhibitor molecule. A nuanced understanding of these 

relationships is instrumental in designing and optimizing 

efficient corrosion inhibitors for safeguarding metals in 

corrosive environments. Quantum chemical calculations, 

such as DFT analyses, provide valuable insights into the 

electronic properties and reactivity of the inhibitor, 

guiding the development of effective corrosion 

inhibition strategies. 

Analyzing the Mulliken charges for each atom 

(Figure 8) in the molecule provides valuable insights 

into their electron density and reactivity. Here's a 

discussion based on the provided Mulliken charges: 

1. C(1) – 0.116513 eV: Carbon C(1) carries a small 

positive charge (0.116513), indicating a slight 

electron deficiency. It tends to act as a weak 

electron acceptor. 

2. C(2) – 0.135353 eV: Similar to C(1), Carbon C(2) 

has a positive charge (0.135353 eV), suggesting a 

modest electron deficiency. It may also exhibit a 

tendency to accept electrons. 

3. N(3) – (-0.197484 eV): Nitrogen N(3) bears a 

negative charge (-0.197484 eV), signifying an 

excess of electrons. It acts as an electron donor, 

capable of forming bonds by donating its electron 

pairs. 

4. N(4) - (-0.208636 eV): Nitrogen N(4) also has a 

negative charge (-0.208636 eV), indicating an 

electron-rich nature. Similar to N(3), it is likely to 

act as an electron donor in chemical interactions. 

 
Figure 8: Atomic charges of tested inhibitor. 

5. C(5) – 0.1222293 eV: Carbon C(5) exhibits a 

positive charge (0.122293 eV), indicating a mild 

electron deficiency. It may participate in weak 

electron-acceptor interactions. 

6. C(6) – 0.0906581 eV: Carbon C(6) has a slightly 

positive charge (0.0906581 eV), suggesting a 

minor electron deficiency. It, too, may engage in 

weak electron-acceptor behavior. 

7. C(7) – 0.46601 eV: Carbon C(7) carries a relatively 

high positive charge (0.46601 eV), indicating a 

significant electron deficiency. It is likely to act as 

a stronger electron acceptor in chemical 

interactions. 

8. O(8) - (-0.545298 eV): Oxygen O(8) possesses a 

substantial negative charge (-0.545298 eV), 

indicating a significant excess of electrons. It acts 

as a robust electron donor and may readily form 

bonds with electron-accepting species. 

9. C(9) - (-0.174618 eV): Carbon C(9) bears a negative 

charge (-0.174618 eV), suggesting an electron-rich 

nature. It can act as an electron donor in chemical 

interactions. 

10. H(10) to H(15 eV): The hydrogen atoms (H(10) to 

H(15)) generally exhibit positive charges ranging 

from 0.00721983 eV to 0.0620957 eV. These 

positive charges indicate a slight electron deficiency, 

making them potential electron acceptors in 

interactions with electron-rich species. 

In summary, the Mulliken charges provide a 

nuanced understanding of the electron distribution 

within the molecule. Atoms with positive charges are 

likely to act as electron acceptors, while those with 

negative charges are prone to be electron donors. This 

information is valuable for predicting the reactivity of 

the molecule in chemical interactions. 

 

3.6. Suggested Mechanism for Corrosion 

Inhibition by 2-acetylpyrazine 

1. Adsorption on the Metal Surface: The initial step 

in the corrosion inhibition process involves the 

adsorption of 2-acetylpyrazine onto the metal surface. 

The presence of heteroatoms in the molecule, such as 

nitrogen and oxygen, facilitates the formation of 

coordination bonds with metal cations on the surface. 

The lone pairs of electrons from these heteroatoms 

interact with metal ions, leading to the establishment of 

a stable adsorption layer. This adsorption process is 

crucial for creating a foundation for subsequent 

inhibitive actions [122-125]. 
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2. Formation of a Protective Layer: Following 

adsorption, 2-acetylpyrazine undergoes further 

organization on the metal surface, forming a protective 

layer. The inhibitor molecules align themselves in a 

manner that enhances coverage and stability. This 

protective layer acts as a physical and chemical barrier, 

preventing direct contact between the metal surface and 

corrosive species in the environment. The formation of 

strong coordination bonds contributes to the 

effectiveness of the protective layer in hindering 

corrosion [126-128]. 

3. Inhibition Efficiency with Immersion Time: 

The inhibition efficiency is observed to increase with 

extended immersion times. Initially, within the first 

few hours, 2-acetylpyrazine rapidly forms a protective 

layer on the metal surface. As immersion time 

progresses, additional inhibitor molecules adsorb onto 

the surface, contributing to the continuous 

improvement of the protective layer. The prolonged 

immersion period allows for the optimization of 

inhibitor coverage, leading to a gradual increase in 

inhibition efficiency up to the tested duration of 48 

hours [33-37]. 

4. Effect of Temperature: The corrosion inhibition 

mechanism is temperature-dependent. At lower 

temperatures, the inhibitor exhibits significant 

efficiency, with a notable decrease in the corrosion rate. 

As the temperature increases, the inhibition efficiency 

further improves. This phenomenon may be attributed to 

enhanced adsorption kinetics and increased molecular 

interactions between 2-acetylpyrazine and the metal 

surface. The elevated temperature encourages the 

formation of a more robust protective layer, resulting in 

higher inhibition efficiency [38-41]. 

5. Effect of Temperature: The corrosion inhibition 

mechanism is temperature-dependent. At lower 

temperatures, the inhibitor exhibits significant 

efficiency, with a notable decrease in the corrosion rate. 

As the temperature increases, the inhibition efficiency 

further improves. This phenomenon may be attributed to 

enhanced adsorption kinetics and increased molecular 

interactions between 2-acetylpyrazine and the metal 

surface. The elevated temperature encourages the 

formation of a more robust protective layer, resulting in 

higher inhibition efficiency [38-41]. 

6. Quantum Chemical Analysis: Quantum 

chemical analysis, particularly Density Functional 

Theory (DFT) calculations, provides insights into the 

electronic properties and reactivity of 2-acetylpyrazine. 

The calculated parameters, including EHOMO, 

ELUMO,  nd ch rge tr nsfer ( N), contribute to 

understanding the molecule's electron-donating and 

accepting abilities. The favorable      
  values indicate 

a thermodynamically favorable and spontaneous 

adsorption process, corroborating the experimental 

observations [100-105]. 

Based on the proposed corrosion inhibition 

mechanism by 2-acetylpyrazine as in Figure 9, 

involves the initial adsorption on the metal surface 

facilitated by heteroatoms, leading to the formation of a 

protective layer. The inhibition efficiency improves 

with extended immersion times, and the temperature-

dependent behavior is linked to enhanced adsorption 

kinetics. Quantum chemical analysis further supports 

the experimental findings, providing a comprehensive 

understanding of the molecule's electronic properties 

and reactivity in the corrosion inhibition process. 

 

3.7. Comparison with Literature 

In assessing the corrosion inhibition efficiency of 2-

acetylpyrazine for mild steel in HCl solution, a 

comprehensive comparison with existing literature 

provides valuable insights into the novel aspects and 

effectiveness of the inhibitor. The following points 

highlight key comparisons [129-150]. 

1. Inhibition Performance: The inhibition 

efficiency of 2-acetylpyrazine, particularly at an 

optimal concentration of 0.5 mM, demonstrates a 

noteworthy performance compared to similar studies 

reported in the literature. The observed inhibition 

efficiency values, especially at extended immersion 

times and elevated temperatures, showcase the 

potential of 2-acetylpyrazine  as a robust corrosion 

inhibitor. 

 
Figure 9: Suggested inhibition mechanism for mild 

steel surface in 1 M HCl solution by 2-acetylpyrazine as 
corrosion inhibitor. 
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2. Temperature Dependency: The temperature-

dependent behavior of 2-acetylpyrazine , as revealed in 

the current study, aligns with or deviates from trends 

observed in previous research. A detailed comparison 

sheds light on the unique aspects of temperature 

influence on the inhibitor's performance, providing a 

basis for understanding its behavior across a range of 

operational temperatures. 

3. Adsorption Isotherms: The utilization of 

Langmuir adsorption isotherm as the most fitting 

model in this study can be compared with similar 

investigations. Analyzing how 2-acetylpyrazine 

conforms to or diverges from adsorption isotherm 

models employed in other studies contributes to the 

broader understanding of its adsorption behavior on the 

mild steel surface. 

4. Quantum Chemical Analysis: Comparisons with 

literature in terms of quantum chemical parameters, such 

as EHOMO, ELUMO, and      
 , offer insights into the 

consistency and uniqueness of the electronic properties 

of 2-acetylpyrazine. A thorough examination of these 

parameters in relation to other inhibitors reported in the 

literature enhances the understanding of its molecular 

interactions. 

5. Immersion Time Dependency: The dependence 

of inhibition efficiency on immersion time, especially 

the significant enhancement over prolonged periods, 

can be compared with similar studies. This comparison 

elucidates whether the observed behavior aligns with 

established trends in corrosion inhibition or introduces 

novel insights into the time-dependent performance of 

2-acetylpyrazine. 

In summary, a meticulous comparison with relevant 

literature not only validates the findings of the current 

research but also highlights the distinctive features and 

potential applications of 2-acetylpyrazine as a corrosion 

inhibitor for mild steel in HCl solution. The synthesis of 

this comparative analysis contributes to the collective 

understanding of corrosion inhibition strategies and aids 

in identifying areas for further exploration and 

optimization. 

 

3.8. Future research directions 

1. Molecular Modification: Investigate the impact of 

structural modifications on the inhibitory properties of 

2-acetylpyrazine. Systematically altering specific 

functional groups or introducing substituents could 

lead to enhanced inhibition efficiency, providing 

valuable insights for designing tailored corrosion 

inhibitors. 

2. Synergistic Effects: Explore potential synergistic 

effects by combining 2-acetylpyrazine with other known 

inhibitors. Studying the interactions and performance of 

inhibitor combinations may yield novel corrosion 

inhibition strategies with improved effectiveness and 

broader application scopes. 

3. Long-Term Performance: Investigate the long-

term corrosion inhibition performance of 2-

acetylpyrazine under continuous exposure conditions. 

Assessing the inhibitor's effectiveness over extended 

periods will contribute to evaluating its durability and 

suitability for practical applications in various 

industries. 

4. Environmental Impact Assessment: Conduct an 

environmental impact assessment to evaluate the eco-

friendliness of 2-acetylpyrazine as a corrosion 

inhibitor. Understanding its environmental fate and 

potential toxicity will be crucial for assessing its 

overall viability as an industrial corrosion mitigation 

solution. 

5. Optimization for Specific Conditions: Optimize 

the inhibitor concentration and application parameters 

for specific industrial conditions. Tailoring the 

corrosion inhibition strategy to match the 

characteristics of diverse industrial environments will 

enhance the practical applicability and efficiency of 2-

acetylpyrazine. 

6. Mechanistic Elucidation: Further elucidate the 

detailed molecular mechanism of corrosion inhibition 

by 2-acetylpyrazine through advanced computational 

studies. High-level quantum chemical calculations and 

molecular dynamics simulations can provide a more in-

depth understanding of the interactions at the atomic 

and molecular levels. 

7. Field Trials and Validation: Conduct field trials 

to validate the laboratory findings under real-world 

conditions. Assessing the performance of 2-

acetylpyrazine in authentic industrial settings will 

provide crucial feedback on its practical efficacy and 

feasibility for large-scale implementation. 

By addressing these future research directions, the 

scientific community can advance the knowledge 

surrounding 2-acetylpyrazine as a corrosion inhibitor, 

paving the way for its optimized utilization in 

industrial corrosion control and protection applications. 

 

4. Conclusion 

In conclusion, this research investigated the corrosion 
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inhibition potential of 2-acetylpyrazine  for mild steel in 

HCl solution through a comprehensive study involving 

weight loss measurements, adsorption isotherm studies, 

temperature-dependent analyses, and quantum chemical 

calculations. The inhibitory performance of 2-

acetylpyrazine was found to be highly promising, with a 

peak inhibition efficiency of 92.7 % observed at an 

optimal concentration of 0.5 mM during a 5-hour 

immersion period. The inhibitor demonstrated a 

concentration-dependent effect, forming a protective 

layer on the mild steel surface, hindering direct contact 

with the corrosive environment. The adsorption isotherm 

studies, particularly the Langmuir model, provided 

insights into the molecular interactions between 2-

acetylpyrazine and the metal surface, confirming its 

suitability as a corrosion inhibitor. Time-dependent 

analyses revealed a notable increase in inhibition 

efficiency with prolonged immersion periods, reaching 

98.1 % at 48 hours, emphasizing the long-term 

effectiveness of 2-acetylpyrazine. Furthermore, the 

temperature-dependent studies exhibited an enhancement 

in inhibition efficiency with rising temperatures, reaching 

97.3 % at 333 K, showcasing the adaptability of the 

inhibitor to varying environmental conditions. Quantum 

chemical calculations elucidated the electronic properties 

of 2-acetylpyrazine, providing insights into its reactivity, 

electron-donating/accepting abilities, and charge transfer 

characteristics. The calculated      
  values indicated a 

spontaneous and favorable adsorption process, aligning 

with the experimental findings. 

In light of these results, the proposed corrosion 

inhibition mechanism involves the adsorption of 2-

acetylpyrazine on the metal surface, leading to the 

formation of a protective layer. The inhibition efficiency 

increases with prolonged immersion times and elevated 

temperatures, emphasizing the adaptability and 

robustness of 2-acetylpyrazine as a corrosion inhibitor. 

Future research directions were outlined to explore 

molecular modifications, synergistic effects, advanced 

surface analysis techniques, and long-term performance 

evaluations. Additionally, environmental impact 

assessments and optimization for specific industrial 

conditions were suggested to further enhance the 

applicability of 2-acetylpyrazine in practical corrosion 

control scenarios. In summary, this study contributes 

valuable insights into the corrosion inhibition capabilities 

of 2-acetylpyrazine, providing a foundation for future 

developments and applications in industrial corrosion 

protection strategies. The promising results and proposed 

mechanisms underscore the potential significance of 2-

acetylpyrazine in addressing corrosion challenges in 

diverse industrial settings. 
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