Cleaner Sustainable Route to Develop UV Protective and Colorful Wool Yarns: Natural Flavonoid-based Colorants from Millettia Laurentti Sawdust

Document Type : Original Article

Authors

1 Key Laboratory of Advanced Eco-Dyeing and Functional Finishing of Textiles, Faculty of Carpet, Tabriz Islamic Art University, P. O. BOX 51385-4567, Tabriz, Iran

2 Department of Applied Sciences and Humanities (Chemistry), GL Bajaj Institute of Technology and Management, Greater Noida, UP, 201306, India

3 College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, PR China

4 Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

Synthetic dyes have gained much of the textile dyeing market by offering various colors. Synthetic dyes have been a worry for the environment owing to their hazardous nature running in parallel. In recent decades, there has been a movement to substitute natural compounds due to their biocompatibility, biodegradability, and biological advantages. This study investigated using Millettia Laurentii sawdust as a natural colorant source. Eco-friendly metal salts (aluminium sulfate, ferrous sulfate, and copper sulfate) under ecologically permitted concentration levels and biomordants (tannic acid, pine bark, oak fruit hull, and eucalyptus leaves) were used to broaden the color range (CIEL*a*b*C*ho and K/S) with significant improvements in the fastness attributes (washing, rubbing, and light) and UV protection properties. Fastness results were found in the commercially acceptable range. All the metal salts provided enhanced color yields with a maximum performance by iron and the corresponding iron-biomordant combinations (iron/pine bark and iron/oak fruit hull). Among the biomordants, pine bark extract provided better performance and higher color depth (9.16) than other biomordants. The findings of this research work showed a significant influence of metal salts and biomordants in combination with Millettia Laurentii sawdust (supposed to be a waste) for enhancing the color characteristics and functional attributes of wool yarns.

Keywords

Main Subjects


  1. Atav R, Ergünay U. Screening of vegetal dyes for wool dyeing: selection of feasible alternatives for industrial applications. Fibers Polym. 2024; 25(1): 193-209. https://doi.org/10.1007/s12221-023-00415-1
  2. Kasiri MB, Safapour S. Exploring and exploiting plants extracts as the natural dyes/antimicrobials in textiles processing. Prog Color Colorants Coat. 2015;8(2):87-114.https://doi.org/10.30509/pccc. 2015. 75856.
  3. Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM. Quevedo-Hidalgo BE. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules. 2021; 26(13):3813.https://doi.org/10.3390/molecules26133813.
  4. Khattab TA, Abdelrahman MS, Rehan M. Textile dyeing industry: environmental impacts and remediation. Environ Sci Pollut Res. 2020;27:3803-18. https://doi.org/10.1007/s11356-019-07137-z.
  5. Safapour S, Mazhar M, Moradnejad J, Liaghat F. A facile route to extend the color gamut of cochineal, Dactylopius coccus costa, natural dye on wool textiles. J Text Inst.2023:1-12.In press. https://doi.org/10.1080/ 00405000. 2023.2283247.
  6. Shahmoradi Ghaheh F, Haji A, Daneshvar E. Sustainable Dyeing Process for Nylon 6 Fabrics by Rhubarb Flower Using Different Bio-Mordants. Sustainability. 2023;15(12):9232. https://doi.org/ 10. 3390/su15129232.
  7. Hosseinnezhad M, Safapour S. Sources, chemistry, classification, challenges, and prospects of renewable Dyes Pigm. Renewable Dyes Pigm. 2024: 1-18. https://doi.org/10.1016/B978-0-443-15213-9.00001-6.
  8. Kasiri MB, Safapour S. Natural dyes and antimicrobials for green treatment of textiles. Environ Chem Lett. 2014;12(1):1-13. https://doi.org/10.1007/ s10311-013-0426-2.
  9. Haji A, Naebe M. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. J Cleaner Prod. 2020;265:121866. https://doi.org/10. 1016/j.jclepro.2020.121866.
  10. Rather LJ, Ali A, Zhou Q, Ganie SA, Gong K, Haque QMR, et al. Instrumental characterization of merino wool fibers dyed with Cinnamomum camphora waste/fallen leaves extract: An efficient waste management alternative. J Cleaner Prod. 2020; 273:123021.https://doi.org/10.1016/j.jclepro.2020.123021.
  11. Sadeghi-Kiakhani M, Safapour S, Golpazir Y. Impact of chitosan-poly (amidoamine) dendreimer hybrid treatment on dyeing and color fastness properties of wool yarn with madder natural dye. Prog Color Colorants Coat. 2019; 12(4):241-50. https://doi. org/ 10.30509/pccc.2019.81595.
  12. Safapour S, Rather LJ, Safapour R, Mir SS. Valorization of bio-colorants extracted from Hypercium scabrum L. plant for sustainable and ecological coloration of wool yarns. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e19439.
  13. Zhou Q, Rather LJ, Mir SS, Ali A, Haque QMR, Li Q. Bio colourants from the waste leaves of Ginkgo biloba L. tree: Wool dyeing and antimicrobial functionalization against some antibiotic-resistant bacterial strains. Sustainable Chem Pharm. 2022;25:100585.https://doi.org/10.1016/j.scp.2021.100585.
  14. Baseri S. Agricultural crop of Scrophularia striata as a new dye for eco-friendly dyeing and bioactive finishing of handwoven piles. Sustainable Chem Pharm. 2023;33:101088. https://doi.org/10.1016/j. scp.2023.101088.
  15. Hosseinnezhad M, Gharanjig K, Adeel S, Mahmoudi Nahavandi A. Clean dyeing of wool yarns using oleaster fruit components as new bio-mordant: a step toward reducing agricultural waste. Clean Technol Environ Policy. 2023;25(10):3149-60. https://doi.org/ 10.1007/s10098-023-02563-7.
  16. Rather LJ, Akhter S, Padder RA, Hassan QP, Hussain M, Khan MA, et al. Colorful and semi durable antioxidant finish of woolen yarn with tannin rich extract of Acacia nilotica natural dye. Dyes Pigm. 2017;139:812-9.https://doi.org/10.1016/j. dyepig. 2017. 01.018.
  17. Rather LJ, Azam M, Shabbir M, Bukhari MN, Shahid M, Khan MA, et al. Antimicrobial and fluorescence finishing of woolen yarn with Terminalia arjuna natural dye as an ecofriendly substitute to synthetic antibacterial agents. RSC Adv. 2016;6(45):39080-94. https://doi.org/10.1039/C6RA02717B.
  18. Safapour S, Liaghat F. A review on multifunctional coating of textiles via silver nanoparticles synthesized with plant sources. J Studies Color World. 2022; 12(2):133-58. DOR:20.1001.1.22517278.1401.12. 2. 3.0.
  19. Safapour S, Rather LJ, Mazhar M. Coloration and functional finishing of wool via Prangos ferulacea plant colorants and bioactive agents: colorimetric, fastness, antibacterial, and antioxidant studies. Fibers Polym. 2023; 24(4):1379-88. https://doi.org/10. 1007/s12221-023-00156-1.
  20. Safapour S, Rather LJ, Moradnejad J, Mir SS. Functional and colorful wool textiles through ecological dyeing with lemon balm bio-dyes and mordants. Fibers Polym. 2023;24(12):4357-70. https://doi.org/10.1007/s12221-023-00397-0
  21. Kamnaing P, Free SYF, Fomum ZT, Martin M-T. Millettonine, a guanidine alkaloid from Millettia Laurentii. Phytochem. 1994; 36(6):1561-2. https://doi. org/ 10.1016/S0031-9422(00)89766-6.
  22. Ma F, Huang A-m. Rapid identification and quantification three chicken-wing woods of Millettia leucantha, Millettia Laurentii and Cassia siamea by FT-IR and 2DCOS-IR. J Mol Struct. 2018; 1166:164-8. https://doi.org/10.1016/j.molstruc.2018.04.037.
  23. Ngamga D, Free SF, Fomum Z, Chiaroni A, Riche C, Martin M, et al. Millaurine and acetylmillaurine: Alkaloids from Millettia Laurentii. J Nat Prod. 1993; 56(12):2126-32. https://doi.org/10.1021/np50102a015
  24. Banzouzi J, Prost A, Rajemiarimiraho M, Ongoka P. Traditional uses of the African Millettia species (Fabaceae). Int J Bot. 2008; 4(4):406-420. https://doi.org/10.3923/ijb.2008.406.420.
  25. Jena R, Rath D, Rout SS, Kar DM. A review on genus Millettia: Traditional uses, phytochemicals and pharmacological activities. Saudi Pharm J. 2020; 28(12):1686-703.https://doi.org/10.1016/j.jsps. 2020. 10. 015.
  26. Kamnaing P, Free SNF, Nkengfack AE, Folefoc G, Fomum ZT. An isoflavan-quinone and a flavonol from Millettia Laurentii. Phytochem. 1999;51(6):829-32. https://doi.org/10.1016/S0031-9422(99)00043-6
  27. Bechtold T, Mussak R. Handbook of Natural Colorants: John Wiley & Sons; 2009. https://doi.org/ 10.1002/9780470744970.
  28. Safapour S, Rather LJ, Mir SS, Dar QF. Upscaling Millettia Laurentii carpentry sawdust into natural dyes: imparting antimicrobial, antioxidant, and UV-protective finish to wool yarns through an ecological and sustainable natural dyeing process. Biomass Convers Biorefin. 2023: 1-13. In press. https://doi. org/10.1007/s13399-023-04184-y.
  29. Weigl M, Kandelbauer A, Hansmann C, Pöckl J, Müller U, Grabner M. Application of natural dyes in the coloration of wood. Handbook of Natural Colorants Wiley, New York. 2009: 277-313. https://doi.org/10.1002/9780470744970.ch17.
  30. Shabbir M, Rather LJ, Bukhari MN, Ul-Islam S, Shahid M, Khan MA, et al. Light fastness and shade variability of tannin colorant dyed wool with the effect of mordanting methods. J Nat Fibers. 2019; 16(1):100-113. https://doi.org/10.1080/15440478.2017.1408521.
  31. Hassan MM, Saifullah K. Sustainable dyeing and functionalization of jute fabric with a Chinese sumac gall-derived gallotannin using eco-friendly mordanting agents. Cellulose. 2021; 28(8):5055-70. https://doi.org/10.1007/s10570-021-03805-x.
  32. Guesmi A, Ladhari N, Hamadi NB, Msaddek M, Sakli F. First application of chlorophyll-a as biomordant: sonicator dyeing of wool with betanin dye. J Cleaner Prod. 2013;39:97-104. https://doi.org /10.1016/j.jclepro.2012.08.029.
  33. İşmal ÖE. Greener natural dyeing pathway using a by-product of olive oil; prina and biomordants. Fibers Polym. 2017;18:773-85. https://doi.org/10.1007/ s12221-017-6675-0.
  34. Shabbir M, Mohammad F. Sustainable coloration and bioactive functionalization of wool fabric via plant-based naphthoquinone compounds. Fibers Polym. 2023; 24(1):179-86. https://doi.org/10.1007/s12221-023-00131-w.
  35. Shahmoradi Ghaheh F, Moghaddam MK, Tehrani M. Comparison of the effect of metal mordants and bio‐mordants on the colorimetric and antibacterial properties of natural dyes on cotton fabric. Color Technol. 2021;137(6):689-98. https://doi.org/10.1111/ cote.12569.
  36. Lohtander T, Arola S, Laaksonen P. Biomordanting willow bark dye on cellulosic materials. Color Technol. 2020;136(1):3-14. https://doi.org/10.1111/ cote.12442.
  37. Ke G, Mulla MS, Peng F, Chen S. Dyeing properties of natural Gardenia on the lyocell fabric pretreated with tannic acid. Cellulose. 2023; 30(1):611-24. https://doi.org/10.1007/s10570-022-04896-w.
  38. Burkinshaw S, Kumar N. The mordant dyeing of wool using tannic acid and FeSO4, Part 1: Initial findings. Dyes Pigm. 2009;80(1):53-60. https://doi. org/10.1016/ j.dyepig.2008.05.008.
  39. Kim YS, Bae SE. Dyeabilities with various fabrics and chemical composition of brown colorants from pine bark. Fashion Text Res J. 2013; 15(1):138-46. http://dx.doi.org/10.5805/SFTI.2013.15.1.138
  40. Santos J, Monteiro S, Oliveira S, Magalhães P, Magalhães FD, Martins JM, et al. Application of forest by-products in the textile industry: dyeing with pine and eucalyptus bark extracts. Environ Sci Proc. 2022;22(1):30. https://doi.org/10.3390/IECF2022-13053.
  41. Şöhretoğlu D, Renda G. The polyphenolic profile of Oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem Rev. 2020; 19(6):1379-426. https://doi.org/10.1007/s11101-020-09707-3.
  42. Hosseinnezhad M, Gharanjig K, Jafari R, Imani H, Razani N. Cleaner colorant extraction and environmentally wool dyeing using oak as eco-friendly mordant. Environ Sci Pollut Res. 2021;28:7249-60. https://doi.org/10.1007/s11356-020-11041-2.
  43. Matlhoko KS, Vermaas JF, Cronjé N, van der Merwe S. Assessing the effectiveness of traditional wool scouring for small-scale farmers in South Africa: a study on detergents and scouring time. Res J Text Apparel. 2023. In press. https://doi.org/10. 1108/RJTA-02-2023-0017.
  44. Safapour S, Mazhar M, Abedinpour S. Broadening color shade range of rubia tinctorum L. natural colorants on wool fibers via combination of metal mordants: color characteristics and fastness studies. J Nat Fibers. 2023; 20(1):2157923. https://doi.org/ 10.1080/15440478.2022.2157923.
  45. Safapour S, Mazhar M, Abedinpour S. Color shade extension of Reseda luteola L. natural colorant on wool textiles via binary combination of metal salts: colorimetric and fastness studies. Fibers Polym. 2023;24(9):3221-33. https://doi.org/10.1007/s12221-023-00296-4.
  46. Safapour S, Rather LJ. Effect of single and binary mixed metal mordant combinations on colorimetric and fastness characteristics of wool yarns dyed 
    with Melissa officinalis L. natural colorants. J Text Inst. 2024; 115(1):97-105.https://doi.org/10.1080/ 00405000. 2022.2157941.
  47. Rather LJ, Shabbir M, Li Q, Mohammad F. Coloration, UV protective, and antioxidant finishing of wool fabric via natural dye extracts: cleaner production of bioactive textiles. Environ Prog sustainable Energy. 2019;38(5):13187. https://doi.org/ 10.1002/ep.13187.
  48. Safapour S, Rather LJ. Assessment of colorimetric and fastness properties of prangos ferulacea (jashir) dyed wool yarns in conjunction with mixed metal mordant combinations via reflectance spectroscopy. J Nat Fibers. 2023;20(1):2134267. https://doi.org/10. 1080/ 15440478.2022.2134267.
  49. Rather LJ, Mohammad F. Study on the application of Acacia nilotica natural dye to wool using fluorescence and FT-IR spectroscopy. Fibers Polym. 2015;16(7): 1497-505. https://doi.org/10.1007/s12221-015-4879-8.
  50. Rather LJ, Shahid-ul-Islam, Shabbir M, Bukhari MN, Mohammad F, Khan MA. Adhatoda vasica in conjunction with binary combinations of metal salts and biomordants as an effective textile dye to produce novel shades on wool. J Nat Fibers. 2018;15(4):611-23. https://doi.org/10.1080/15440478.2017.1349712
  51. Safapour S, Sadeghi-Kiakhani M, Doustmohammadi S. Chitosan-cyanuric chloride hybrid as an efficient novel bio-mordant for improvement of cochineal natural dye absorption on wool yarns. J Text Inst. 2019;110(1):81-88.https://doi.org/10.1080/00405000. 2018.1503384.
  52. Shabbir M, Rather LJ, Bukhari MN, Shahid-ul-Islam, Khan MA, Mohammad F. First-time application of biomordants in conjunction with the Alkanna tinctoria root extract for eco-friendly wool dyeing. J Nat Fibers. 2019;16(6):846-54. https://doi.org/10.1080/15440478. 2018.1441085.
  53. Shahid-ul-Islam, Rather LJ, Shabbir M, Sheikh J, Bukhari MN, Khan MA, et al. Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from Butea monosperma flower extract. J Nat Fibers. 2019;16(4):512-23. https://doi.org/10.1080/15440478. 2018.1426080.
  54. Hatch KL, Osterwalder U. Garments as solar ultraviolet radiation screening materials. Dermatologic clinics. 2006;24(1):85-100. https://doi.org/10.1016/j. det.2005.09.005.
  55. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol.2008;84(3):539-49. https://doi. org/10. 1111/j.1751-1097.2007.00226.x.
  56. Chavda VP, Acharya D, Hala V, Vora LK, Dawre S. Sunscreens: A comprehensive review with the application of nanotechnology. J Drug Delivery Sci Technol. 2023: 104720. https://doi.org/10. 1016/j. jddst.2023.104720.
  57. Grifoni D, Bacci L, Zipoli G, Albanese L, Sabatini F. The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigm. 2011; 91(3):279-85. https://doi.org/10.1016/j.dyepig. 2011. 04.006.
  58. Feng X, Zhang L, Chen J, Zhang J. New insights into solar UV-protective properties of natural dye. J Cleaner Prod. 2007; 15(4):366-72. https://doi.org/10. 1016/j.jclepro.2005.11.003.
  59. Shabbir M, Rather LJ, Mohammad F. Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Ind Crops Prod. 2018; 119:277-82. https://doi.org/10.1016/j.indcrop. 2018. 04.016.
  60. Zhou Y, Zhang J, Tang R-C, Zhang J. Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind Crops Prod. 2015; 64:224-32. https://doi.org/10.1016/j.indcrop.2014.09.041.
  61. Zhou Y, Tang R-C. Modification of curcumin with a reactive UV absorber and its dyeing and functional properties for silk. Dyes Pigm. 2016; 134:203-11. https://doi.org/10.1016/j.dyepig.2016.07.016.
  62. Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A. The Impact and Prospects of Green Chemistry for Textile Technology. Elsevier; 2019. https://doi.org/ 10.1016/C2017-0-01957-2.