The Photostabilizing Technology of Grapefruit Peel Extract on Polystyrene Thin Films: Concept Generation Using Morphological and Physical Properties

Document Type : Original Article

Authors

1 Department of Chemistry, College of Science, Mustansiriyah University, P.O. Box 17022, Baghdad, Iraq

2 Department of Chemistry, College of Science, Al-Nahrain University, P.O. Box 64021, Baghdad, Iraq

3 Polymer Research Unit, College of Science, Mustansiriyah University, P.O. Box 17022, Baghdad, Iraq

4 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, P.O. Box 43600, Selangor, Malaysia

5 Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, P.O. Box 10066, Baghdad, Iraq

Abstract

This paper discusses the effects of UV light exposure on Citrus paradisi (grapefruit) peel in terms of naringin and TINUVIN 622 (a commercial stabilizer) compounds. This study aimed to develop a plant extract with the necessary properties to protect polystyrene from sunlight. Polystyrene films containing a low concentration of naringin were prepared, and TINUVIN 622, a commercial UV light stabilizer, irradiated the polystyrene sheets for 300 hours. Following irradiation, the study examined the infrared spectrum of polystyrene, weight loss, molecular weight reduction, and changes in surface morphology. Naringin and TINUVIN 622 significantly reduced the photodegradation of polystyrene films, acting as photostabilizers when compared to blank films.

Keywords

Main Subjects


  1. Kris-Etherton PM, Hecker KD, Bonanome A Coval SM, Binkoski AE, Hilpert KF, Griel AE, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med.2002;113(9)(Suppl. 2):71-88. https://doi.org/ 10.1016/S0002-9343(01)00995-0
  2. Silalahi J. Anticancer and health protective properties of citrus fruit components. Asia Pacific journal of clinical nutrition. 2002; 11(1):79-84. https://doi.org/ 10.1046/j.1440-6047.2002.00271.x
  3. Pharmacopoeia of People’s Republic of China 2000 (in Chinese); Chemical Industry Press: Beijing, China, 2000; pp 108-108. 
  4. Rouseff RL, Martin SF, Youtsey CO. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J Agri Food Chem. 1987; 35(6):1027-30. https://doi. org/10.1021/jf00078a040
  5. Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agri Food Chem. 1998; 46(6):2123-9. https://doi. org/10.1021/jf9709562
  6. Manthey JA, Grohmann K. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agri Food Chem.. 2001; 49(7):3268-73. https://doi. org/ 10.1021/jf010011r
  7. Lodovici M, Guglielmi F, Meoni M, Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxi. 2001; 39(12):1205-10. https://doi. org/10.1016/S0278-6915(01)00067-9
  8. Baliga MS, Katiyar SK. Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci. 2006;5(2):243-53. https://doi.org/10.1039/B505311K
  9. Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2012; 12:54-64. https://doi. org/10.1039/c2pp25152c.
  10. Katiyar SK. Grape seed proanthocyanidines and skin cancer prevention: inhibition of oxidative stress and protection of immune system. Mol Nutri Food Res. 2008; 52(S1):S71-6. https://doi.org/ 10.1002/mnfr. 200700198
  11. Hruza LL, Pentland AP. Mechanisms of UV-induced inflammation. J Invest Dermatol. 1993; 100(1):S35-41. https://doi.org/10.1038/jid.1993.21.
  12. Krause M, Klit A, Blomberg Jensen M, Søeborg T, Frederiksen H, Schlumpf M, et al. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UVā€filters. Inter J And. 2012 Jun;35(3):424-36.https://doi.org/10.1111/j.1365-2605. 2012.01280.x
  13. Bowden GT. Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Rev Cancer. 2004; 4(1):23-35.  https://doi. org/10.1038/nrc1253
  14. Maier H, Schauberger G, Martincigh BS, Brunnhofer K, Hönigsmann H. Ultraviolet protective performance of photoprotective lipsticks: change of spectral transmittance because of ultraviolet exposure. Photoderm Photoimmunol Photomed. 2005; 21(2):84-92. https://doi.org/10.1111/j.1600-0781.2005.00143.x
  15. Ahmed H, Ahmed A, Yousif E, Ahmed DS, Kadhom M, Husain A, et al. Effect of ecofriendly grapefruit peel extract on PVC thin films photostabilizing tested under harmful weathering conditions. J Vinyl Add Technol. https://doi.org/10.1002/vnl.22029
  16. Gentili B, Horowtiz RM. Chromatography of dihydrochalcone sweeteners and related compounds: A reagent for detecting dihydrochalcones. J Chromatograph A. 1971; 63:467-9. https://doi.org/ 10. 1016/S0021-9673(01)85678-8
  17. Shriner RL, Hermann CK, Morrill TC, Curtin DY, Fuson RC. The systematic identification of organic compounds. John Wiley & Sons; 2003 Aug 19.
  18. Hakim A, Loka IN, Prastiwi NW. New method for isolation of naringin compound from Citrus maxima. Natural Res. 2019; 10(08):299. 10.4236/nr.2019. 108019
  19. Biazar E, Zeinali R, Montazeri N, Pourshamsian K, Behrouz MJ, Asefnejad A, et al. Cell engineering: nanometric grafting of poly-N-isopropylacrylamide onto polystyrene film by different doses of gamma radiation. Intern J Nanomed. 2010:549-56. https://doi.org/10.2147/IJN.S8269
  20. Sharma T, Aggarwal S, Kumar S, Mittal V, Kalsi PC, Manchanda VK. Effect of gamma irradiation on the optical properties of CR-39 polymer. J Mater Sci. 2007; 42:1127-30. https://doi.org/10.1007/s10853-006-0516-7
  21. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC. Degradation of styrene-g-cassava starch filled polystyrene plastics. Poly Degradation Stability. 1999; 66(3):323-35. https://doi.org/10.1016/S0141-3910(99)00082-8
  22. Yousif E, Ahmed DS, El-Hiti GA, Alotaibi MH, Hashim H, Hameed AS, et al. Fabrication of novel ball-like polystyrene films containing Schiff base microspheres as photostabilizers. Polymers. 2018; 10(11):1185.. https://doi.org/10.3390/polym10111185
  23. Ahmed A, Abdallh M, Al-Mashhadani MH, Ahmed DS, Bufaroosha M, Jawad AH, et al. Environmental stability of poly (vinyl chloride) modified by schiff’s base under exposure to UV. Biointerface Res Appl Chem. 2021; 11(5):13465-73. https://doi.org/10. 33263/ BRIAC115.1346513473
  24. Yaseen AA, Yousif E, Al-Tikrity ET, El-Hiti GA, Kariuki BM, Ahmed DS, et al. FTIR, weight, and surface morphology of poly (vinyl chloride) doped with tin complexes containing aromatic and heterocyclic moieties. Polymers. 2021; 13(19):3264. https://doi.org/10.3390/polym13193264
  25. Ahmed AA, Al-mashhadani MH, Hashim H, Ahmed DS, Yousif E. Morphological, color impact and spectroscopic studies of new schiff base derived from 1, 2, 4-triazole ring. Prog Color Colorant Coat. 2021; 14(1):27-34. 10.30509/PCCC.2021.81664
  26. Arraq RR, Hadi AG, Ahmed DS, Al-Mashhadani MH, Hashim H, Ahmed AA, et al. Color Changes, AFM and SEM Study of PVC/triorganotin (IV)-Cephalexin Complexes Samples Via UV Radiation. Prog Color Colorant Coat. 2023; 16(3):283-94. 10.30509/PCCC.2023.167075.1195
  27. Guzman-Puyol S, Hierrezuelo J, Benítez JJ, Tedeschi G, Porras-Vázquez JM, Heredia A, et al. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. Inter J Biol Macromol. 2022; 209:1985-94. https://doi.org/10.1016/j.ijbiomac.2022.04.177
  28. Zhu CN, Li CY, Wang H, Hong W, Huang F, Zheng Q, et al. Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks. Adv Mater. 2022; 33(18):2008057. https://doi.org/10.1002/ adma.202008057