Ultrafine Titanium-dioxide (Rutile) Based Nano-crystalline Dispersions as a Pigment for Waterborne Coatings

Document Type : Original Article


1 Department of Chemical Engineering, Institute of Technology, Nirma University, Ahmedabad, PIN: 382481, Gujarat, India

2 Chemical Engineering Department, Pandit Deendayal Energy University, Gandhinagar, PIN: 382007, Gujarat, India


The present study involves a novel approach in manufacturing nano-crystalline dispersions of titanium dioxide, a widely used pigment in the paints and coatings market. These dispersions are developed to provide certain benefits over conventional titanium dioxide powder to improve the coating parameters such as adhesion promotion, hiding, tinting strength, dispersion, and reduced dosage. Dispersions are synthesized using bead mill and high-speed disperser in a unique multi-stage process, thereby developing a scalable technology for industrial synthesis. Characterization of these dispersions, namely XRD, particle size analysis, and FE-SEM, confirmed the presence of nano-crystalline titanium dioxide particles. Moreover, analysis of process variables was also conducted by studying the effect of grinding time on particle-size reduction. Rheological analysis was performed for water and styrene-acrylic copolymer emulsion systems. It was developed a dataset of viscosities. Results of this study can be assessed to create scalable technology for the synthesis of nano-crystalline dispersions, which can be used as a pigment in multipurpose waterborne coating systems.


Main Subjects

  1. Titanium Dioxide Market Size, Share & Trends Analysis Report By Application (Paints & Coatings, Plastics, Pulp & Paper, Cosmetics), By Region (APAC, North America, Europe), And Segment Forecasts, 2021 – 2028 (Report ID: 978-1-68038-705-6), Grand View Research (2021).
  2. Middlemas, Z. Z. Fang, P. Fan, A new method for production of titanium dioxide pigment. Hydrometal., 131(2013), 107-113.
  3. J. Gázquez, J. P. Bolivar, F. García-Tenorio García-Balmaseda, F. Vaca, A review of the production cycle of titanium dioxide pigment, Sci. Res., 5(2014), 441-458.
  4. González-Rodríguez, D. L. Zapata-Tello, J. Vallejo-Montesinos, R. Z. Nunez, J.A. Gonzalez-Calderon, E. Perez, Improving titanium dioxide dispersion in water through surface functionalization by a dicarboxylic acid, J. Disp. Sci. Tech., 27(2018), 33-45.
  5. Raoufi, Z. Ranjbar, S. Rategar, E. Nowak, B. Nazari, Wettability study of superHydrophobic silica aerogel powders. Prog. Color Colorants Coat., 13(2020), 75-83.
  6. C. Lane, Additives in water-borne coatings, Royal Society of Chemistry, Cambridge (UK), 2003, Issue No. 290.
  7. S. Taurozzi, V. A. Hackley, M. R. Wiesner, A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxi., 7.4(2013), 389-401.
  8. Dumitru, I. Jitaru, The impact of rheology modifiers on the viscosity of decorative water based paint upon tinting, UPB Sci. Bull., Series B, 73.1 (2011), 27-36.
  9. Takeda, E. Tanabe, T. Iwaki, A. Yakubi, K. Okuyama, Preparation of nanocomposite microspheres containing high concentration of TiO2 nanoparticles via bead mill dispersion in organic solvent, Chem. Lett., 38.5(2009), 448-449.
  10. M. Joni, A. Purwanto, F. Iskandar, K. Okuyama, Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process, Ind. Eng. Chem. Res., 48.15(2009), 6916-6922.
  11. Agbo, W. Jakpa, B. Sarkodie, A. Boakye, S. Fu, A review on the mechanism of pigment dispersion, J. Disp. Sci. Tech., 39.6(2018), 874-889.
  12. Nagose, E. Rose, A. Joshi, Study on wetting and dispersion of the Pigment Yellow 110, Prog. Org. Coat., 133(2019), 55-60.
  13. KarakaƟ, B. V. Hassas, K. Ozhan, F. Boylu, M. S. Celik, Calcined kaolin and calcite as a pigment and substitute for TiO2 in water based paints, In XIV Balkan Mineral Processing Congress, Bosnia Herzegovina, (2011), 461-464.
  14. M. Hess, Characterization of dispersions, Rub. Chem. Tech., 64.3(1991), 386-449.
  15. Choi, W. Lee, J. Lee, H. Chung, W. S. Choi, Ultra-fine grinding of inorganic powders by stirred ball mill: Effect of process parameters on the particle size distribution of ground products and grinding energy efficiency, Met. Mater. Int., 13.4(2007), 353-358.
  16. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, A. W. Weimer, Nanoparticle coating for advanced optical, mechanical and rheological properties, Adv. Func. Mater., 17.16(2007), 3175-3181.
  17. Khajeh Aminian, T. Azizi, R. Dehghan, M. Hakimi, Synthesis and Characterization of CoAl2O4 Nano Pigments by Polyol Method, Prog. Color Colorants Coat., 10(2017), 231-238.
  18. Vajda, K. Saszet, E.Z. Kedves, Z. Kasa, V. Danciu, L. Baia, K. Magyari, K. Hernadi, G. Kovacs, Z. Pap, Shape-controlled agglomeration of TiO2 nanoparticles New insights on polycrystallinity vs. single crystals in photocatalysis, Cera. Int., 42.2(2016), 3077-3087.
  19. Rashvand, Z. Ranjbar, Cathodic electrodeposion of nano Titania along the epoxy based coating and evaluation of its anticorrosion properties, Prog. Color Colorants Coat., 7.4(2014), 227-235.
  20. P. Yeap, J. Lim, H.P. Ngang, B.S. Ooi, A.L. Ahmad, Role of particle–particle interaction towards effective interpretation of Z-average and particle size distributions from dynamic light scattering (DLS) analysis, J. Nano. Nanotech., 18.10(2018), 6957-6964.
  21. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy, J. Phy. Chem., C, 112.20 (2008), 7710-7716.
  22. A. Abdulmajeed, S. Hamadullah, F. A. Allawi, Deep oxidative desulfurization of model fuels by prepared nano TiO2 with phosphotungstic acid, J. Eng., 24.11(2018), 41-52.
  23. Mohammadi, A. Aliakbarzadeh Karimi, H. Fallah Moafi, Adsorption and photocatalytic properties of surface-modified TiO2 nanoparticles for methyl orange removal from aqueous solutions, Prog. Color Colorants Coat., 9(2016), 249-260.
  24. Wang, H. Ding, Y. Deng, Characterization of calcined kaolin/TiO2 composite particle material prepared by mechano-chemical method, J. Wuhan Uni. Tech. Mater. Sci. Ed., 25.5(2010), 765-769.
  25. G. Yu, J. H. An, Titanium dioxide core/polymer shell hybrid composite particles prepared by two-step dispersion polymerization, Coll. Surf. A: Physico. Eng. Asp., 237.1-3(2004), 87-93.
  26. J. Yang, A. V. Kelkar, X. Zhu, G. Bai, H. T. Ng, D. S. Corti, E. I. Frances, Effect of sodium dodecylsulfate monomers and micelles on the stability of aqueous dispersions of titanium dioxide pigment nanoparticles against agglomeration and sedimentation, J. Coll. Int. Sci., 450(2015), 434-445.
  27. Ranjbar, S. Ashhari, A. Jannesari, S. Montazeri, Effects of nano silica on the Anticorrosive properties of epoxy coatings, Prog. Color Colorants Coat., 6.2(2013), 119-128.
  28. Gu, X. Zhao, Y. Liu, Y. Lv, Preparation and tribological properties of dual-coated TiO2 nanoparticles as water-based lubricant additives, J. Nanomat., 2014(2014), 112569.
  29. Hosseinnezhad, M. Ghahari, H. Shaki, J. Movahedi, Investigation of DSSCs performance: the effect of 1,8-naphthalimide dyes and Na-doped TiO2., Prog. Color Colorants Coat., 13(2020), 177-185.
  30. Theivasanthi, A. Marimuthu, Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight, arXiv:1307.1091 [physics.chem-ph], Cornell University, (2013), 1-10.
  31. A. Ramazanov, F. V. Hajiyeva, A. M. Maharramov, A. B. Ahmadova, U. A. Hasanova, A. M. Rahimli, H. A. Shirinova, Influence of polarization processes on the morphology and photoluminescence properties of PP/TiO2 polymer nanocomposites, Acta Phys. Pol. A, 131.6(2017), 1540.
  32. M. Omer, E. T. B. Al-Tikrity, R. N. Abed, M. Kadhom, A. H. Jawad, E. Yousif, Electrical conductivity and surface morphology of PVB films doped with different nanoparticles, Prog. Color Colorants Coat., 15(2022), 191-202.
  33. Anis, M. S. Pandian, M. I. Baig, P. Ramasamy, G. G. Muley, Monocrystal growth and characterization study of α-and γ-polymorph of glycine to explore superior performance of γ-glycine crystal, Mater. Res. Innov., 22.7(2018), 409-414.
  34. Epp, X-ray diffraction (XRD) techniques for materials characterization, Materials characterization using nondestructive evaluation (NDE) methods, Woodhead Publishing, 2016, 81-124.
  35. Madhi, B. Shirkavand Hadavand, A. Amoozadeh, Thermal conductivity and viscoelastic properties of UV-curable urethane acrylate reinforced with modified Al2O3 nanoparticles, Prog. Color Colorants Coat., 10(2017), 193-204.
  36. Ohenoja, M. Illikainen, J. Niinimäki, Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling, Powder Tech., 234(2013), 91-96.
  37. Hrininh, R. Hordeichuk, O. Gubenia, Comparative analysis of equipment and research the superfine grinding process of titanium dioxide and quinacridone red suspensions in the bead mill, Ukrainian J. Food Sci., 6(2018), 82-94.
  38. Ogi, R. Zulhijah, T. Iwaki, K. Okuyama, Recent progress in nanoparticle dispersion using bead mill, KONA Powd. Parti. J., (2017), 2017004.
  39. S. Gwebu, H. Chiririwa, The effect of hydroxyl ethyl cellulose (HEC) and hydrophobically–modified alkali soluble emulsions (HASE) on the properties and quality of water based paints, Int. J. App. Chem., 13.1(2017), 1-13.
  40. H. Nour, Emulsion types, stability mechanisms and rheology: A review, Inter. J. Innov. Res. Sci. Stud. (IJIRSS), 1.1(2018).
  41. Dumitru, I. Jitaru, The impact of rheology modifiers on the viscosity of decorative water based paint upon tinting, UPB Sci. Bull., Series B, 73.1(2011).
  42. Rouhani, M. Hosseinnezhad, S. Nasiri, K. Gharanjig, A. Salem, Z. Ranjbar, Investigation of the effect of rGO/TiO2 on photovoltaic performance of DSSCs devices, Prog. Color Colorants Coat., 15(2022), 123-131.
  43. K. Van Dyk, T. Chatterjee, V. V. Ginzburg, A. I. Nakatani, Shear-dependent interactions in hydrophobically modified ethylene oxide urethane (HEUR) based coatings: Mesoscale structure and viscosity, Macromol., 48.6(2015), 1866-1882.
  44. Clayton, Pigment/dispersant interactions in water-based coatings, Surf. Coat. Int., 80.9(1997), 414-420.
  45. R. A. Bhavsar, K. M. Nehete. Rheological approach to select most suitable associative thickener for water-based polymer dispersions and paints, J. Coat. Tech. Res., 16.4(2019), 1089-1098.