Hydrophilic and Photocatalytic Properties of TiO2/SiO2 Nano-layers in Dry Weather

Document Type : Original Article


1 Department of Physics, Yazd University, Yazd, Iran

2 Department of Physics, University of Tehran, Tehran, Iran

3 Department of Physics, Garmian University, Kalar, KRG, Iraq


This paper describes the changes in TiO2/SiO2 nanolayers properties induced by Ultraviolet- visible spectroscopy (UV) irradiation in terms of hydrophilicity/photocatalycity. The TiO2/SiO2 nano particles were synthesized by the sol-gel method and deposited on soda-lime glass by dip-coating. X-ray diffraction (XRD) of the TiO2 particles showed that the nano-particles were crystallized in anatase crystal structure with a crystallite size of ~12 nm. The morphology and surface roughness of TiO2 nanolayer were observed by scanning electron microscope (SEM) and atomic force microscopy (AFM) analysis. The surface roughness (Ra) for TiO2/Glass and TiO2/SiO2 was measured ~ 5 and 19 nm, respectively. The hardness of nanolayers on the glass was evaluated and scratch thickness for 1000 g sinker was measured ~150 nm. The self-cleaning properties were tested in dry condition (RH<15%) under UV irradiation by evaluating the oleic acid photodegradation and monitoring the hydrophilic properties of the surface with a contact angle measurement. The  result showed that contact angle of the layer decreases from 77 to 42° after 25 h UV irradiation. Fourier-transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) showed the elimination of C=O bonds of oleic acid on the surface after UV light irradiation. Water droplet contact angle measurement on TiO2 nano-layer exhibited a less hydrophilicity after UV irradiation and the contact angle changed  from 15 to 40°, which may be due to the low atmospheric humidity. Adding SiO2 nanoparticles increases roughness of the nano-layer, from 5 to 19 nm, without a significant effect on the photodegradation rate of oleic acid. 


  1. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ., 125(2012), 331–349.
  2. A. Kasmaei, M. Rofouei, M. Olya, S. Ahmed, Kinetic and thermodynamic studies on the reactivity of hydroxyl radicals in wastewater treatment by advanced oxidation processes, Prog. Color Color. Coat., 13(2020), 1–10.
  3. P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, C. Gaysse, Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis, Catal. Today., 63(2000), 363–369.
  4.                 M. Khajeh Aminian, M. Hakimi, Surface modification by loading alkaline hydroxides to enhance the photoactivity of WO3, Catal. Sci. Technol., 4(2014), 657–664.
  5. V. Jodaian, M. Mirzaei, Ce–promoted Na2WO4/TiO2 catalysts for the oxidative coupling of methane,Inorg. Chem. Commun., 100(2019), 97-100
  6. M. Aminian, S. Fatah, Loading of alkaline hydroxide nanoparticles on the surface of Fe2O3 for the promotion of photocatalytic activity, J. Photochem. Photobiol. A., 373(2019), 87–93.
  7. S. Segota, L. Curkovic, D. Ljubas, V. Svetlicic, I.F. Houra, N. Tomasic, Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films, Ceram. Int., 37(2011), 1153–1160.
  8. S. de Niederhãusern, M. Bondi, Self‐cleaning and antibacteric ceramic tile surface, Int. J. Appl. Ceram. Technol., 10(2013), 949–956
  9. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114(2014), 9919-9986.
  10. V. V. Ganbavle, U.K.H. Bangi, S.S. Latthe, S.A. Mahadik, A.V. Rao, Self-cleaning silica coatings on glass by single step sol-gel route, Surf. Coatings Technol., 205(2011), 5338–5344.
  11. C. Kapridaki, P. Maravelaki-Kalaitzaki, TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection, Prog. Org. Coat., 76(2013), 400–410.
  12. R. Mimouni, B. Askri, T. Larbi, M. Amlouk, A. Meftah, Photocatalytic degradation and photo-generated hydrophilicity of methylene blue over ZnO/ZnCr2O4 nanocomposite under stimulated UV light irradiation, Inorg. Chem. Commun., 115 (2020), 107889.
  13. R. Akbari, M. R. Mohammadizadeh, M. Khajeh Aminian, M. Abbasnejad, Hydrophobic Cu2O surfaces prepared by chemical bath deposition method, Appl. Phys. A., 125(2019), 190.
  14. H. Yaghoubi, N. Taghavinia, E.K. Alamdari, Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties, Surf. Coat. Technol., 204 (2010), 1562–1568.
  15. M. R. Mohammadizadeh, M. Bagheri, S. Aghabagheri, Y. Abdi, Photocatalytic activity of TiO2 thin films by hydrogen DC plasma, Appl. Surf. Sci., 350(2015), 43–49.
  16. L. Zhang, R. Dillert, D. Bahnemann, M. Vormoor, Photo-induced hydrophilicity and self-cleaning: Models and reality, Energy Environ. Sci., 5(2012), 7491–7507.
  17. M. Kh. Aminian, J. Ye, Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles, J. Mater. Res., 25(2010), 141-148.
  18. F. Menga, Z. Sun, A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering, Appl. Surf. Sci. 255(2009), 6715-6720.
  19. T. Egerton, Uv-absorption-the primary process in photocatalysis and some practical consequences, Molecules., 19(2014), 18192–18214.
  20. S. Zenkin, S. Kos, J.R. Musil, Hydrophobicity of thin films of compounds of low‐electronegativity metals, J. Am. Ceram. Soc., 97(2014), 2713–2717.
  21. T. Aytug, J. T. Simpson, A. R. Lupini, R. M. Trejo, G. E. Jellison, I. N. Ivanov, S. J. Pennycook, D. A. Hillesheim, K. O. Winter, D. K. Christen, S. R. Hunter, J. A. Haynes, Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films, Nanotechnology, 24(2013), 315602.
  22. M. Ramezani, M. R. Vaezi, A. Kazemzadeh, The influence of the hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol-gel method, Appl. Surf. Sci., 326(2015), 99–106.
  23. T. Kamegawa, Y. Shimizu, H. Yamashita, Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene, Adv. Mater., 24(2012), 3697–3700.
  24. Y. Ye, Z. Liu, W. Liu, D. Zhang, H. Zhao, L. Wang, X. Li, Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel, Chem. Eng. J., 348(2018), 940–951.
  25. Y. Ye, H. Zhao, C. Wang, D. Zhang, H. Chen, W. Liu, Design of novel superhydrophobic aniline trimer modified siliceous material and its application for steel protection, Appl. Surf. Sci., 457(2018), 752–763.
  26. S. S. Latthe, C. Terashima, K. Nakata, A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf, Molecules., 19(2014), 4256–4283.
  27. Y. Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Adv. Colloid Interface Sci., 169(2011), 80–105.
  28. E. Pakdel, W. A. Daoud, X. Wang, Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite, Appl. Surf. Sci., 275(2013), 397– 402.
  29. M. Kh. Aminian, N. Taghavinia, A. Irajizad, S.M. Mahdavi, J. Ye, M. Chavoshi, Z. Vashaei, Two-dimensional clustering of nanoparticles on the surface of cellulose fibers, J. Phys. Chem. C, 113(2009),12022.
  30. H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 20(2004), 5659-5661.
  31. H. Li, M. Zheng, S. Liu, L. Ma, C. Zhu, Z. Xiong, Reversible surface wettability transition between superhydrophobicity and superhydrophilicity on hierarchical micro/nanostructure ZnO mesh films, Surf. Coat. Technol., 224(2013), 88-92.
  32. M. E. Simonsen, Z. Li, E. G. Søgaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol-gel TiO2 film, Appl. Surf. Sci., 255(2009), 8054–8062.
  33. D. K. Owens, R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13(1969), 1741–1747.
  34. [34] B. Bharti, S. Kumar, R. Kumar, Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds, Appl. Surf. Sci., 364(2016), 51–60.
  35. K. N. Pandiyaraj, R. R. Deshmukh, I. Ruzybayev, S. I. Shah, Pi-G.  Su, Jr. Halleluyah, A.S. Halim, Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE), Appl. Surf. Sci, 307 (2014), 109.
  36. Y. Ye, D. Zhang, Z. Liu, W. Liu, H. Zhao, L. Wang, X. Li, Anti-corrosion properties of oligoaniline modified silica hybrid coatings for low-carbon steel, Synth. Met., 235(2018), 61–70.
  37. L. Ye, J. Mao, T. Peng, L. Zan, Y. Zhang, Opposite photocatalytic activity orders of low-index facets of anatase TiO 2 for liquid phase dye degradation and gaseous phase CO2 photoreduction, Phys. Chem. Chem. Phys., 16(2014), 15675-15680.
  38. A. Schafani, L. Palmisano, M. Schiavello, Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion, J. Phys. Chem., 94(1990), 829.
  39. E.G. Mariquit, W. Kurniawan, M. Miyauchiro, H. Hinode, Effect of addition of surfactant to the surface hydrophilicity and photocatalytic activity of immobilized Nano-TiO2 thin films, J. Chem. Eng. Japan, 48(2015), 856-861.
  40. H. Zhang, Y. Liu, Y. Wu, K. Ruan, Superhydrophilic and highly transparent TiO2 films prepared by dip coating for photocatalytic degradation of methylene blue, J. Nanosci. Nanotechnol., 15(2015), 2531–2536.
  41. R. Fateh, R. Dillert, D. Bahnemann, Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate, Langmuir 29(2013), 3730-3739.
  42. M. Shayan, Y. Jung, Po-Shun Huang, M. Moradi, Anton Y. Plakseychuk, Jung-Kun Lee, R. Shankar, Y. Chun, Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability, J. Mater Sci: Mater Med., 25(2014), 2721-2730. 
  43. H. Irie, K. Hashimoto, Photocatalytic active surfaces and photoinduced high hydrophilicity/high hydrophobicity, Springer-Verlag, 2(2005), 440.
  44. M. Hayakawa, E. Kojima, K. Norimoto, M. Machida, A. Kitamura, T. Watanabe, M. Chikuni, A. Fujishima, K. Hashimoto, Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof, Toto Ltd. US 7, 294, 365 B2 (2007).
  45. M. Farrokhbin, M. Khajeh Aminian, H. Motahari, Wettability of liquid mixtures on porous silica and black soot layers, Prog. Color Colorants Coat., 13(2020), 239-249.
  46. K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Technol., 191(2005), 155– 160.  
  47. J. Rathousk, V. Kalousek, M. Kolá, J. Jirkovsk, P. Barták, A study into the self-cleaning surface properties-the photocatalytic decomposition of oleic acid, Catal. Today, 161(2011), 202–208.
  48. H.M. Hung, P. Ariya, Oxidation of oleic acid and oleic acid/sodium chloride (aq) mixture droplets with ozone: Changes of hygroscopicity and role of secondary reactions, J. Phys. Chem. A, 111(2007), 620.
  49. Y. Katrib, S.T. Martin, H.M. Hung, Y. Rudich, H. Zhang, J.G. Slowik, P. Davidovits, J.T. Jayne, D.R. Worsnop, Products and mechanisms of ozone reactions with oleic acid for aerosol particles having core− shell morphologies, J. Phys. Chem. A., 108(2004), 6686.
  50. D. H. Lee, R. A. Condrate Sr., FTIR spectral characterization of thin film coatings of oleic acid on glasses: I. coatings on glasses from ethyl alcohol, J. Mater. Sci., 34(1999), 139–146.  
  51. D. H. Lee, R. A. Condrate Sr., W. C. Lacourse, FTIR spectral characterization of thin film coatings of oleic acid on glasses Part II Coatings on glass from different media such as water, alcohol, benzene and air, J. Mater. Sci., 34(2000), 4961-4970.
  52. T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, J.T. Yates, Jr., Ultraviolet light-induced hydrophilicity effect on TiO2(110) (1×1) dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets, J. Phys. Chem. B, 109(2005), 15454-15462.