Sol–Gel Based Liquid-Mix Method for the Synthesis of Znfe2O4 Spinel

Document Type : Original Article

Authors

1 Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, Tehran, Iran

2 Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, Australia

Abstract

The superparamagnetic ZnFe2O4 (ZFO) powder with spinel structure was synthesized by a sol–gel based liquid-mix method using deionized water, citric acid, iron nitrate, zinc nitrate, and propylene glycol. Based on the principles of the Pechini method, the obtained solutions were treated under reflux at 95 °C followed by drying to obtain the desired powder. Simultaneous thermal analysis (STA) showed that there are three main thermal events at 165, 300, and 800 °C, which are related to the evaporation of water and/or volatile chemicals, combustion of organic materials, and chemical reactions to form ZFO phase, respectively. Among different calcination temperatures, thermal treatment at 900 °C led to the formation of a powder which its XRD pattern is well-matched with the ZFO standard peaks. Scanning electron microscopy (SEM) showed that calcination at 400-600 °C led to some agglomerated sediment particles in the range of 50-100 nm, whereas the morphologies of the samples calcined at 700-900 °C consisted of some fused particles with larger size (~1 μm). The vibrating sample magnetometer (VSM) results approved that although magnetization saturation (Ms) values were negligible in the samples calcined at lower temperatures (low–temperature samples), Ms value of the sample calcined at 900 °C was about ±7.5 emu/g. On the other hand, the S-shaped hysteresis curves of the high-temperature samples (calcined at 700-900 °C) and consequently zero/near-zero value for the coercivity (Hc) and remanence (Mr) parameters confirmed the superparamagnetic behavior of the as-synthesized ZFO compound. 

Keywords


  1. O. Vozniuk, T. Tabanelli, N. Tanchoux, J. M. M. Millet, S. Albonetti, F. Di Renzo, F. Cavani, Mixed-oxide catalysts with cpinel ctructure for the valorization of biomass: the chemical-loop reforming of bioethanol, Catalysts, 8(2018), 332-347.
  2. M. Mazarji, G. Nabi Bidhendi, N.M. Mahmoodi, Mathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid, Prog. Color Colorants Coat., 10(2017), 173-180.
  3. E. Abdul Rahman Assirey, Perovskite synthesis, Properties and their related biochemical and industrial application, Saudi Pharm. J., 27(2019), 817-829.
  4. E. B. Rubin, Y. Chen, R. Chen, Optical properties and thermal stability of Cu spinel oxide nanoparticle solar absorber coatings, Sol. Energy Mater. Sol. Cells, 195(2019), 81-88.
  5. S. Mahvidia, M. Gharagozlou, M. Mahdavian, S. Naghibi, Potency of ZnFe2O4 nanoparticles as corrosion inhibitor for stainless steel; the pigment extract study, Mater. Res., 20(2017), 1492-1502.
  6. S. Mahvidi, M. Gharagozlou, M. Mahdavian, S. Naghibi, Anticorrosive Performance of polyester–melamine coating fortified with Zinc Ferrite nanoparticles, Prog. Color Colorants Coat., 12(2019), 57-70.
  7. M. Alzamani, A. Shokuhfar, S. Mastali, E. Eghdam, M. Hossaini, On the investigation of Sol-Gel TiO2 nanostructured films applied on windshields pre-coated with SiO2 layer by dip-coating method, Prog. Color Colorants Coat., 6(2012), 51-59.
  8. M. M. Obeid, Y. Mogulkoc, S. J. Edrees, Y. O. Ciftci, M. M. Shukur, M. M. H. Al-Marzooqee, Analysis of the structural, electronic, elastic and thermodynamic properties of CuAl2X4 (X = O, S) spinel structure, Mater. Res. Bulletin, 108(2018), 255-265.
  9. O. M. Sousa, J. S. Lima, A. F. Lima, M. V. Lalic, Theoretical study of structural, electronic and magnetic properties of the spinel Co3O4 under the pressure from 0 to 30 GPa, J. Magnet. Magnet. Mater., 484(2019), 21-30.
  10. S. Abedini khorrami, M. E. Olya, F. Motiee, N. Khorshidi, Synthesis of CuO-ZnO nanocomposite and its photocatalytic activity, Prog. Color Colorants Coat., 9(2016), 207-215.
  11. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications, Adv. Colloid Inter. Sci., 265(2019), 29-44.
  12. K. E. Sickafus, J. M. Wills, N. W. Grimes, Structure of Spinel, J. Am. Ceram. Soc., 82(1999), 3279-3292.
  13. T. R. Sobahi, M. S. Amin, Synthesis of ZnO/ZnFe2O4/Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity, Ceram. Inter., 46(2020), 3558-3564.
  14. F. Li, H. Wang, L. Wang, J. Wang, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magnet. Magnet. Mater., 309(2007), 295-299.
  15. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 nanocrystals:  synthesis and magnetic properties, J. Phy. Chem. C, 111(2007), 12274-12278.
  16. H. Mehrizadeh, A. Niaei, H. H. Tseng, D. Salari, A. Khataee, Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor, J. Photochem. Photobiol. A: Chem., 332(2017), 188-195.
  17. F. Liu, X. Li, Q. Zhao, Y. Hou, X. Quan, G. Chen, Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol–gel template method, Acta Mater., 57(2009), 2684-2690.
  18. F. Iqbal, M. I. A. Mutalib, M. S. Shaharun, M. khan, B. Abdullah, Synthesis of ZnFe2O4 using sol-gel method: effect of different calcination parameters, Proced. Eng., 148(2016), 787-794.
  19. J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, Z. Fan, Effect of the solvents on the photocatalytic properties of ZnFe2O4 fabricated by solvothermal method, Mater. Chem. Phy., 223(2019), 758-761.
  20. K. R. Lestari, P. Yoo, D. H. Kim, C. Liu, B. W. Lee, ZnFe2O4 nanoparticles prepared using the hydrothermal and the sol-gel methods, J. Korean Phy. Soc., 66(2015), 651-655.
  21. N. Erfaninia, R. Tayebee, E. L. Foletto, M. M. Amini, M. Dusek, F. M. Zonoz, Preparation of magnetically recyclable ZnFe2O4 nanoparticles by easy single-step co-precipitation method and their catalytic performance in the synthesis of 2-aminothiophenes, Appl. Organomet. Chem., 32(2018), e4047.
  22. P. Pechini Maggio, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, SPRAGUE ELECTRIC CO, US, 1967, 30-50.
  23. A. E. Danks, S. R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horizons, 3(2016), 91-112.
  24. F. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis, J. Appl. Crystallog., 7(1974), 519-525.
  25. A. Jamshidi, A. A. Nourbakhsh, S. Naghibi, K. J. D. MacKenzie, Application of the statistical Taguchi method to optimize X-SiAlON and mullite formation in composite powders prepared by the SRN process, Ceram. Internat., 40(2014), 263-271.
  26. B. G. Rao, D. Mukherjee, B. M. Reddy, Chapter 1-Novel approaches for preparation of nanoparticles, in: D. Ficai, A.M. Grumezescu (Eds.) Nanostructures for Novel Therapy, Elsevier 2017, 1-36.
  27. Q. Song, Z. J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc., 126(2004), 6164-6168.
  28. M. Gharagozlou, S. Naghibi, M. Ataei, Water-based synthesis of ZnO nanoparticles via decomposition of a ternary zinc complex containing Schiff-base, chelating, and Phen ligands, J. Chinese Chem. Soc., 65(2018), 1210-1217.
  29. M. Gharagozlou, S. Naghibi, Synthesis of ZnO nanoparticles based on Zn complex achieved from L-leucine, J. Chinese Chem. Soc., 63(2016), 290-297.
  30. Y. K. Dasan, B. H. Guan, M. H. Zahari, L. K. Chuan, Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite, PLoS ONE, 12(2017), e0170075.
  31. Ding, V. Sagar, M. Agudelo, S. pilakka kanthikeel, V. Atluri, A. Raymond, S. Thangavel, M. Nair, Enhanced blood-brain barrier transmigration using a novel Transferrin-embedded fluorescent magnetoliposome nanoformulation, Nanotechnol., 25(2014), 055101.