Electrochemical Characterizations of Epoxy Coatings Embedded by Modified Calcium Carbonate Particles

Document Type : Original Article


Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran.


In this paper, electrochemical behavior of epoxy paints embedded by modified calcium carbonate particles was investigated during exposure to 3.5 wt% NaCl solution. The precipitated calcium carbonate (PCC) and ground calcium carbonate (GCC) particles were utilized as inexpensive filler for epoxy paints. Electrochemical impedance spectroscopy (EIS), polarization tests and pin-on-disk method were used to determine the protective properties of epoxy paints on carbon steel substrates. GCC particles with the concentration of 20 wt% were more effective than PCC particles in increasing the corrosion resistance of epoxy paints; however, PCC particles affected obviously the reduction of friction coefficient of epoxy paints under wet condition (3.5 wt% NaCl solution). This behavior may be attributed to the small size and spherical shape of such particles. Values of the friction coefficient for epoxy paints were about 0.5-0.6 under dry condition. The coating resistance increased by about 99 % in the presence of GCC particles in 20 wt% after 3 days of the immersion. In addition, equivalent electrical circuits suggested that the ion transport through defects in the paint layer is the controlling factor in the corrosion process after immersion for 7 days.


  1. M. E. A. S. Martin, C. R. M. Zavala, E. G. Ochoa, F. J. R.Gomez, Physical and electrochemical behavior of epoxy coatings submitted to drastic thermal ageing, Int. J. Electrochem. Soc., 7(2012), 1459-1469.
  2. J. W. P. Boke, Calcium carbonate particle size effects on titanium dioxide light scattering in coatings, Master thesis, the Faculty of California Polytechnic State University, United State, 2013.
  3. M. Longhi, L. P. Zini, V. Pistor, S. R. Kunst, A. J. Zattera, Evaluation of the mechanic and electrochemical properties of an epoxy coating with addition of different polyhedral oligomeric silsesquioxanes (POSS) applied on substrate of low alloy steel, Mater. Res., 20(2017), 1388-1401.
  4. E. Yarahmadi, K. Didehban, M, Shabanian, M.R. Saeb, High-performance starch-modified graphene oxide/epoxy nanocomposite coatings: A glimpse at cure kinetics and fracture behavior, Prog. Color Colorants Coat., 11(2018), 55-62.
  5. M. Azadi, M.E. Bahrololoom, M. J. Olya, EIS study of epoxy paints in corrosive environments with a new filler: rice husk ash, Prog. Color Colorants Coat., 9(2016), 53-60.
  6. M. Azadi, M. E. Bahrololoom, F.Heidari, Enhancing the mechanical properties of an epoxy coating with rice husk ash, a green product, J. Coat. Technol. Res., 8(2011), 117-123.
  7. Y. Zheng, Y. Zheng, R. Ning, Effects of nanoparticles SiO2 on the performance of nanocomposites, Mater. Lett., 57(2003), 2940-2944.
  8. M. Jouyandeh, O. Moini Jazani, A.H. Navarchian, M.R. Saeb, Epoxy coatings physically cured with hydroxyl-contained silica nanospheres and halloysite nanotubes, Prog. Color Colorants Coat., 11(2018), 199-207.
  9. C. M. Abreu, M. Izquierw, M. Keddam, X. R. Novoa, H. Takenoti,  Electrochemical behavior of zinc-rich epoxy paints in 3% NaCl solution, Elecrrochimica Acta, 41(1996), 2405-2415.
  10. N. Hammouda, H.e Chadli, G. Guillemot, K.Belmokre, The corrosion protection behavior of zinc rich epoxy paint in 3% NaCl solution, Adv. Chem. Eng. Sci., 1( 2011), 51-60.
  11. V. R. Chary, M. K. Mogan, Mechanical characterization of TiO2 reinforced epoxy composites with the addition of nanocrystalline TiB2 particles, Int. J. Sci. Technol. Eng., 3(2017), 111-119.
  12. M. R. Saeb, H. Vahabi, M. Jouyandeh, E. Movahedifar, R. Khalili, Epoxy-based flame retardant nanocomposite coatings: comparison between functions of expandable graphite and halloysite nanotubes, Prog. Color Colorants Coat., 10(2017), 245-252.
  13. R. Jain, A. K. Narul, V. Choudhary, Studies on epoxy/calcium carbonate nanocomposites, J. Appl. Polymer Sci., 114(2009), 2161-2168.
  14. T. P. Mohan, K. Kanny, Thermal, mechanical and physical properties of nanoegg shell particle-filled epoxy nanocomposites, J. Compos. Mater., 2(2018), 1-12.
  15. C. M. Chan, J. Wu, J. X. Li, Y. K. Cheung, Polypropylene/calcium carbonate nanocomposites, Polymer, 43(2002), 2981-2992.
  16. A. M. Atta, H. A. A. Lohedan, A. O. Ezzat, S. A. A. Hussain, Characterization of superhydrophobic epoxy coatings embedded by modified calcium carbonate nanoparticles, Prog. Org. Coat., 101(2016), 577-586.
  17. M. Azadi, M. J. Olya, S. Vahedi, N. F. Sangani, The effect of the chemical composition and the volume of coated carbonate calcium on epoxy paint properties, Russian J. Appl. Chem., 90(2017), 1181-1187.
  18. H. Yu, L. Wang, Q. Shi, S. Jiang, G. Jiang, Preparation of epoxy resin/CaCO3 nanocomposites and performance of resultant powder coatings, J. Appl. Polymer Sci., 101(2006), 2656-2660.
  19. S. B. Jeong, Y. C. Yang, Y. B. Chae, B. G. Kim, Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system, Mater. Transactions, 50(2009), 409-414.
  20. A. L. Ortega, J. L. Arana, R. Bayon, Tribocorrosion of passive materials: A review on test, Int. J. Corros., 2018(2018), 7345346.
  21. A. S. Dominguez, J.J. P. Bueno, I. Z. Torres a, M.L. M. Lopez, Characterization and corrosion resistance of electroless black Ni-P coatings of double black layer on carbon steel, Surf. Coat. Technol., 326(2017), 192-199.
  22. L. X. Bach, D. L. Son, M. T. Phong, L. V. Thang, M. Z. Bian, N. D. Name, A study on Mg and AlN composite in microstructural and electrochemical characterizations of extruded aluminum alloy, Compos. Part B, 156(2019), 332-343.
  23. M. A. Deyab, A. A. Nada, A. Hamdy, Comparative study on the corrosion and mechanical properties of nano-composite coatings incorporated with TiO2 nano-particles, TiO2 nano-tubes, and ZnO nano-flowers, Prog. Org. Coat., 105(2017), 245-251.
  24. I. R. Oliveira, S. C.Amico, R. Barcella, A.G.B. Lima, Application of calcium carbonate in resin transfer molding process, Defect Diffusion Forum, 353(2014), 39-43.
  25. N. Hammouda, K. Belmokre, Study of the behavior of an organic coating applied on algerian oil tanker in seawater, Int. J. Mater. Metallurgical Eng., 9(2015), 219-225.
  26. V. B. M. Stankovi, Z. Z. Lazarevi, Z. M.K. Popovi, Electrochemical properties and thermal stability of epoxy coatings electrodeposited on aluminium and modified aluminium surfaces, J. Serb Chem. Soc., 66(2001), 871-880.
  27. M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods, Appl. Phys. A, 124(2018), 377-387.
  28. A. H. S. Bueno, J. Solis, H. Zhao, C. Wang, T.A. Simoes, M. Bryant, A. Neville, Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry, Wear, 394(2018), 60-70.
  29. A. L. Ortega, R. Bayan, J.L. Arana, Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater, Surf. Coat. Technol., 349(2018), 1083-1097.
  30. M. P. Licausi, A. I. Munoz, V. A. Borras, N. Espallargas, Tribocorrosion mechanisms of Ti6Al4V in artificial saliva by zero-resistance ammetry (ZRA) technique, J. Bio- Tribo Corros., 1(2015), 8-20.
  31. R. J. K. Wood, Tribo-corrosion of coatings: a review, J. Physics D: Appl. Physics, 40(2007), 5502-5521.