Energy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption

Document Type : Original Article

Authors

Mechanical Engineering, Engineering College, Al-Nahrain University,Baghdad, Iraq.

Abstract

Novel method doped carbon with nanoparticle Cr2O3 and thin film has been studied in much thought in wavelength range, the doping can help new excellent physical and chemical properties for carbon, this application has a semiconductor feature. Nanocomposite thin film deposited on copper and glass substrates have been created by utilizing Spray Pyrolysis method. The precursor solution for the nanocomposite (Cr2O3/C) was blended with the polyethylene glycol as a colloidal. The optical band gap is a crucial property for the nanocomposite, for instance, nanocomposite thin film of Cr2O3/C was kept by shower process on glass and copper substrates. The band gap for the nanocomposite photo-catalytic has been finished using X-ray diffraction, UV-Vis spectrometer. The assessed optical band gaps for direct and indirect transition values determined and were 3.5, 3.25 eV and photon energy 1.65 eV to carbon doped by nanoparticle Cr2O3. Thin film thickness ranging between 45-160 µm This paper achieved the doped carbon by nanoparticles of Cr2O3 for thin layer coating in flat plate collector. New coating activity may be given by novel nanocomposite Cr2O3/C structure as a semiconductor. Results showed a new nanocomposite to enhance the absorption of the solar energy light activity.This paper achieved the doped carbon by nanoparticles of Cr2O3 for thin layer coating in flat plate collector. New coating activity may additionally be given via novel Nanocomposite Cr2O3/C structure as a semiconductor. Results showed a new Nanocomposite to enhance the absorption of solar energy light activity.

Keywords


  1. A. Basheer, Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century, Wiley J., 30(2018), 402-406.
  2. A. A. Basheer, Imran Ali, Water photo splitting for green hydrogen energy by green nanoparticles, Inter. J. Hydrogen Energy, 44(2019), 11564-11573
  3. Z. A. AL-Othman, A. Y. Badjah, I. Ali, Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4 tert octylphenol endocrine disruptor in water, J. Mol. Liqu., 275(2019), 41–48.
  4. I. Ali, New Generation Adsorbents for water treatment, Am. Chem. Soc., 112(2012), 5073−5091.
  5. I. Alia, A. A. Basheerc, X.Y. Mbiandad, A. Burakove, E. Galunine,I. Burakovae, E. Mkrtchyane, A. Tkacheve, V. Grachev, Graphene based adsorbents for remediation of noxious pollutants from wastewater, Environ. Inter., 127(2019), 160–180
  6. I. Ali, A. A. Basheer, A. Kucherova, N. Memetov, T. Pasko, K. Ovchinnikov, V. Pershin, D. Kuznetsov, E. Galunin, V. Grachev, A. Tkachev, Advances in carbon nanomaterials as lubricants modifiers, J. Mol. Liq., 279(2019), 251-266.
  7. A. A. Basheer, I. Ali, Water photo splitting for green hydrogen energy by green nanoparticles, Inter. J. Hydrogen Energy, 44(2019), 11564-11573
  8. A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63(2008), 515–582.
  9. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photo-catalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44(2005), 8269–8285.
  10. E. A. Burakova, T. P. Dyachkova, A. V. Rukhov, E. N. Tugolukov, E. V. Galunin, A. G. Tkachev, A. A. Basheer, I. Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation, J. Mol. Liq., 253(2018), 340–346.
  11. I. Ali and C. K. Jain, Advances in arsenic speciation techniques, Intern. J. Environ. Anal. Chem., 84(2004), 947–964.
  12. I. Ali, Z. A. AL-Othman, M. M. Sanag, Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211(2015), 457–465.
  13. I. Ali, Z. A. Alothman, A. Alwarthan, Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption, J. Mol. Liq., 236(2017), 205-213.
  14. I. Ali, O. M.L. Alharbi, Z. A. Alothman, A. Y. Badjah, A. Alwarthan, A. A. Basheer, Artificial neural network modelling of amido black dye sorption on iron composite nanomaterial: Kinetics and thermodynamics studies. J. Mol. Liq. 250(2018), 1–8.
  15. J. Xu. J. J. Zhu, H. Wang, H. Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal. Lett. 36(2003), 2723-2733.
  16. V. Pillai, P. Kumar, M. J. Hou, P. Ayyub, D. O. Shah, Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Inter. Sci. 55(1995), 241-269.
  17. I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations, J. Mol. Liq., 271(2018), 677-685.
  18. I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. Alwarthan, Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water, Colloid. Surface B, 171(2018), 606-613.
  19. I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. Y. Badjah, Kinetics, thermodynamics and modelling of amido black dye photodegradation in water using Co/TiO2 nanoparticles, Photochem. PhotoBiol., 94(2018), 935-941.
  20. I. Alia, O. M. L. Alharbi, Z. A. ALothman, A. M. Al-Mohaimeed, A. Alwarthan, Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water, Environ. Res., 170(2019), 389–397.
  21. I. Ali, Z. A. Al-Othman and A. Al-Warthan, Removal of secbumeton herbicide from water on composite nanoadsorbent, Desalin. Water Treat., 57(2016), 10409-10421.
  22. Z. Yang, X. Peng, C. Xu, F. Wang, Electrochemical assembly of Ni–xCr–yAl nano composites with excellent high-temperature oxidation resistance, J. Electrochem. Soc., 156(2009), C167-C175.
  23. H. Rotter, M. V. Landau, M. Carrera, d. Gold farb, M. Herskowitz, Spectral Tuning in the Human Blue Cone Pigment, Biochem., 38(1999), 11593–11596.
  24. R. H., L. M. V., C. M., G. D., H. M., High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion, Appl. Catal. B, 47(2004), 111-126.
  25. C. L., S. Z., W. X., P. S. V., Hu J., K. S., R. R., Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres, Appl. Mater. Interface, 1(2009), 1931–1937.
  26. W. S. Chae, S. W. Lee, Y. R Kim, Templating route to mesoporous nanocrystalline titania nanofibers. Chem. Mater. 17(2005), 3072-3074.
  27. Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125(2003), 15981-15985.
  28. Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nano crystalline TiO2-based photo-catalysts. J. Phys. Chem. B. 102(1998), 10871-10878.
  29. S. Kim, S. J. Hwang, W. Choi, Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B. 109(2005), 24260-24267.
  30. Y. Choi, T. Umebayashi, S. Yamamoto, S. Tanaka, Fabrication of TiO2 photo-catalysts by oxidative annealing of TiC. J. Mater. Sci. Lett. 22(2003), 1209-1211.
  31. Z. Wu, The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnol. 20(2009), 235701-235710.
  32. R. Bechstein, Evidence for vacancy creation by chromium doping of rutile titanium dioxide (110). J. Phys. Chem. C. 113(2009), 3277–3280.
  33. G. K. Larsen, Structural, optical, and photocatalytic properties of Cr: TiO2 nanorod array fabricated by oblique angle Co-deposition, J. Phys. Chem. C, 115(2011), 16892–16903.
  34. R. Bhosale, Visible-light-activated nano composite photo-catalyst of Cr2O3/SnO2. J. Nanostructure Chem. 3 (2013), 1-8.
  35. A. Hajjaji, Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multi crystalline silicon films. Nanoscale Res. Lett. 9(2014), 1-6.
  36. S. Guan, Fabrication of photocatalyst composite coatings of Cr-TiO2 by mechanical coating technique and oxidation process, Coatings, 5(2015), 545-556.
  37. H. Yan, Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog. Natural Sci. Mater. Int. 4(2013), 402–407.
  38. M. K. Alamgir, Tailoring the energy band gap of transition metal doped TiO2 thin film. J. Nano Anal. 3(2014), 129-134.
  39. E. Kim, Measurement and calculation of optical band gap of chromium aluminum oxide films. Jpn. J. Appl. Phys. 39(2000), 4820–4825.
  40. S. M. Sabnis, P. A. Bhadane, P. G. Kulkarni, Process flow of spray pyrolysis technique, IOSR J. Appl. Phy. 4(2013), 7-11.
  41. B. Okolo, P. Lamparter, U. Welzel, E. J. Mittemeijer, Stress, texture, and microstructure in niobium thin films sputter deposited onto amorphous substrates. J. Appl. Phys. 95(2004), 466-473.
  42. M. Tabbal, S. Kahwaji, T.C. Christidis, B. Nsouli , K. Zahraman, Pulsed laser deposition of nanostructured dichromium trioxide thin films. Thin Solid Films. 515(2006), 1976-1984.
  43. T. K. Hamad, Refractive index dispersion and analysis of the optical parameters of (PMMA/PVA) thin film. J. Al-Nahrain Univer. 16(2013), 164-170.
  44. A. Ali, D. Fadhil, E. Yousif, Z. Hussain, S. Abdul-Wahab, A comprehensive study of conductive polymer matrix composites: A review, Res. J. Pharmac. Biological Chem. Sci. 8(2017), 2043- 2049.
  45. R. N. Abed, N. K. Al-Sahib and A. N. Khalifa, Optical study to doping carbon with TiO2 that utilizing in thermal concentration. Oriental J. Phy. Sci., 2(2017), 109-113.
  46. M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, Optical properties of thermally evaporated Cr2O3 thin films. Canadian J. Chem. Eng. Technol., 3(2012), 81-85.
  47. T. Ivanova, K. Gesheva, A. Cziraki, A. Szekeres and E. Vlaikova, Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films. J. Phys. Conference Ser., 113(2008), 1-5.
  48. A. Elwhab B. Alwany, O. M. Samir, M. A. Algradee, M. M. Hafith, M. A. Abdel-Rahim, Investigation of the effect of film thickness and heat treatment on the optical properties of TeSeSn thin films. World J. Condensed Matter Phys. 5(2015), 220-231.
  49. N. G. Ndegwa, F. G. Ndiritu, A. S. Hussein, P. K. Kamweru, J. K. Kagia, Z. W. Muthui, Reflectance, transmittance and absorptance of HDPE, LDPE, glass and sand layer used in a SAH. Inter. J. Appl. Phys. Mathem. 4(2014), 406-4016.
  50. M. M. Abdullah, F. M. Rajab, S. M. Al-Abbas, Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. Am. Institute Phys. Adv. 4(2014), 1-11.
  51. M. Diantoro, M. B. Zaini, Z. Muniroh, N. Ahidayat, The effect of Cr2O3 doping on structures and dielectric constants of SiO2-Bi2O3-B2O3-Na2CO3 glass based on silica gel of natural sand, International Conference on Physical Instrumentation and Advanced Materials, J. Phys. Conf. Series. 853(2017), 1-9.
  52. J. Jenkins, W. H. Jarvis, W. Ashhurst, basic principles of electronics, vol. 2, Semiconductors book, Elsevier, 1971.