Synthesis and Investigation on Viscoelastic Properties of Urethane Acrylate- Polyaniline


1 Department of Chemical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran

2 Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran

3 Department of Chemistry, Payame Noor University, Tehran, Iran


The aim of this research is to investigate the viscoelastic behavior and determination of cross-link density of thin conductive coatings of urethane acrylate-polyaniline. For this purpose, polyaniline and urethane acrylate resin were synthesized. Nanocomposites with different percentages of polyaniline (1, 3, and 5%) were prepared and cured by ultraviolet irradiation. The viscoelastic properties of prepared thin films were evaluated by dynamic mechanical thermal analysis under stresses with a certain frequency at different temperatures. Also, cross-link density of nanocomposites was measured after ultraviolet curing. The results indicated that the glass transition temperature decreases and the cross-link density increases with the amount of polyaniline.


  1. D. Vollath, Nanoparticles, Nanocomposites and Nanomaterials, Wiley-VCH Verlag GmbH & Co, 2013.
  2. D. R. Paul, L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, 49(2008), 3187–3204.
  3. S. Thomas, R. Shanks, S. Chandrasekharakurup, Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, Elsevier Science, 2015.
  4. S. Thomas, H.J. Maria, Progress in Rubber Nanocomposites, Elsevier Science & Technology, 2016.
  5. A. Eftekari, Nanostructured Conductive Polymer, John Wiley & Sons, 2010.
  6. G. Inzelt , Conducting Polymer a New Era in Electrochemistry, 2nd Ed., Springer-verlag Berlin Heidelberg, 2012.
  7. Zh. A. Boeva, V. G. Sergeyev, Polyaniline: Synthesis, properties and application, Polym. Sci. Ser. C, 56(2014), 144-153.
  8. G. C´iric´-Marjanovic´, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications, Synth. Met., 177(2013), 1- 47.
  9. J. D. Menczel, R. B. Prime, Thermal Analysis of Polymers Fundamentals and Applications, John Wiley& Sons, 2009.
  10. B. Shirkavand Hadavand, F. Najafi, M. R. Saeb, A. Malekian, Hyperbranched polyesters urethane acrylate resin: A study on synthesis parameters and viscoelastic properties,High Perform. Polym., 29(2017), 651-662.
  11. S. Kashi, R. K. Gupta, N. Kao, S. N. Bhattacharya, Viscoelastic properties and physical gelation of poly(butylene adipate-co-terephthalate)/graphene nanoplatelet nanocomposites at elevated temperatures, Polymer, 101(2016), 347-357.
  12. A. Madhi, B. Shirkavand Hadavand, A. Amoozadeh, Thermal conductivity and viscoelastic properties of UV-curable urethane acrylate reinforced with modified Al2O3 nanoparticles, Prog. Color Colorants Coat. 10(2017), 193-204.
  13. N. Saba, M. T. Paridah, K. Abdan, N. A. Ibrahim, Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites, Constr. Build. Mater., 124(2016), 133-138.
  14. B. Shirkavand Hadavand, H. Hosseini, Investigation of viscoelastic properties and thermal behavior of photocurable epoxy acrylate nanocomposites, Sci. Eng. Compos. Mater., 24(2017), 691-697.
  15. S. D. Reinitz, E. M. Carlson, R. A. C. Levine, K. J. Franklin, D. W. Van Citters, Dynamical mechanical analysis as an assay of cross-link density of orthopaedic ultra high molecular weight polyethylene, Polym. Test., 45(2015), 174-178.
  16. W. Stark, M. Jaunich, Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA, Polym. Test., 30(2011), 236-242.
  17. W. Stark, Investigation of the curing behaviour of carbon fibre epoxy prepreg by Dynamic Mechanical Analysis DMA, Polym. Test., 32(2013), 231-239.
  18. S. D. Maurya, S. K. Kurmvanshi, S. Mohanty, S. K. Nayak, Synthesis and characterization of crosslinked transparent poly(ester-urethane-acrylate) containing methyl methacrylate, Macromol. Res., 25(2017), 871-881.
  19. H. Farzad, F. Najafi, M. Bengisu, E. Yilmaz, B. Shirkavand Hadavand, Synthesis and characterization of aliphatic tri-functional oligomeric urethane methacrylate used for UV-curable aluminum pigmented coatings, J. Macromol. Sci. Part A Pure Appl. Chem., 50(2013), 504-512.
  20. F. Najafi, E. Bakhshandeh, B. Shirkavand Hadavand, M. R. Saeb, Toward UV-curable urethane acrylate/silica hybrid coatings: Introducing urethane methacrylate trimethoxysilane (UAMS) as organic–inorganic coupling agent, Prog. Org. Coat., 77(2014), 1957-1965.
  21. F. Mohtadizadeh, M. J. Zohuriaan-Mehr, B. Shirkavand Hadavand, A. Dehghan, Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: Synthesis, spectral, and thermo-mechanical studies, Prog. Org. Coat., 89(2015), 231-239.
  22. Y. C. Chung, H. Y. Kim, and J. W. Choi, B. C. Chun, Preparation of urethane-acrylates by the photo-polymerization of acrylate monomers using a benzophenone initiator grafted onto a polyurethane copolymer, Macromol. Res., 22(2014), 1115-1124.
  23. F. Najafi, B. Shirkavand Hadavand, A. Pournamdar, Trimethoxysilane-assisted UV-curable urethane acrylate as clear coating: From synthesis to properties, Colloid Polym. Sci., 295(2017), 1717-1728.
  24. Z. Hesari, B. Shirkavand Hadavand, M. Mahmoodi Hashemi, Fabrication and study of structural, optical and electrical properties of UV curable conductive polyurethane acrylate films containing polyaniline-Co3O4 nanocomposites, Prog. Color Colorants Coat., 9(2016), 41-52.
  25. G. Wypych, Hand Book of Fillers, 4th Edition, Chemtec, 2016.
  26. K. V. Pillai, S. Renneckara, Dynamic mechanical analysis of layer-by-layer cellulose nanocomposites, Ind. Crops Prod., 93(2016), 267-275.
  27. A. Montazeri, A. Khavandi, J. Javadpour, A. Tcharkhtchi, Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles, Mater. Des., 31(2010), 3383-3388.
  28. R. P. Chartoff, A. K. Sircar ,Thermal Analysis of Polymers, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, 2009.
  29. L. Song, Q. Ye, X. Ge, A. Misra, J. S. Laurence, C. L. Berrie, P. Spencer, Synthesis and evaluation of novel dental monomer with branched carboxyl acid group. J. Biomed. Mater. Res. Part B, 102(2014), 1473-1484.
  30. V. V. Krongauz, Diffusion in polymers on crosslink density Eringappoarch mechanism, J. Them. Anal. Calorim., 102(2010), 435-445.
  31. L. E. Nielsen, Crosslinking effect on physical properties of polymers, J. Macromol. Sci. Part C, 3(1969), 69-103.
  32. T. Kaiser, Highly crosslinked polymers, Prog. Polym. Sci., 14(1989), 373-450.