Synthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures

Authors

1 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.

2 Department of Environmental Research, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran.

Abstract

In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on band gap and photocatalytic properties of TiO2 was investigated. The decolorization abilities of the as-prepared M-TiO2 nanostructures (M = Fe, Co and Ni) under UV and visible irradiation were investigated using three dyes: Acid Red 1, Reactive Blue 21 and Indigo Carmine. The role of  pH value and reaction time on photocatalytic performance of products was also studied. The results showed that the degradation of dyes in lower pH is more and photocatalytic performance Fe-doped TiO2 is better than the others. Kinetic investigation of the photodegradation illustrated reactions were following the Langmuir-Hinshelwood mechanism.

Keywords


  1. N. Naciri, A. Farahi, S. Rafqah, H. Nasrellah, M.A. El Mhammedi, I. Lançar, M. Bakasse, Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate–TiO2 aqueous suspensions, Opti. Mater., 52(2016) 38-43.
  2. F.P. VanderZee, S. Villaverde, Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies, Water Res., 39(2005) 1425-1440.
  3. N.M. Mahmoodi, Z. Mokhtari-Shourijeh, Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling, J. Taiwan Inst. Chem. Eng., 65 (2016) 378-389.
  4. P. Abdi, A. Farzi, A. Karimi, Application of a hybrid enzymatic and photo-fenton process for investigation of azo dye decolorization on TiO2/metal-foam catalyst, J. Taiwan Inst. Chem. Eng., 71(2016), 137-144.
  5. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application, Adv. Powder Technol, 27(2016), 2066-2071.
  6. F. Soofivand, M. Sabet, H. Seyghalkar, M. Salavati-Niasari, Using the [Co (oct)2] as a New Precursor for Simple Synthesis of CoS2 Nanoparticles and Kinetics Studies on Photocatalytic Activities Under UV Irradiation, J. Nanostruct., 8(2018) 75-81.
  7. F. Soofivand, M. Salavati-Niasari, Co3O4/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures, RSC Adv., 5(2015), 64346-64353.
  8. F. Soofivand, M. Salavati-Niasari, Step synthesis and photocatalytic activity of NiO/graphene nanocomposite under UV and visible light as an effective photocatalyst, J. Photochem. Photobiol. A: Chem., 337(2017), 44-53.
  9. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater., 15(2003), 624-627.
  10. S. Livraghi, A. Votta, M.C. Paganini, E. Giamello, The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis, Chem. Commun., (2005), 498-500.
  11. S. Ikezawa, H. Homyara, T. Kubota, R. Suzuki, S. Koh, F. Mutuga, T. Yoshioka, A. Nishiwaki, Y. Ninomiya, M. Takahashi, Applications of TiO2 film for environmental purification deposited by controlled electron beam-excited plasma, Thin Solid Films, 386(2001), 173-176.
  12. K. Seyyedi, M.A.F. Jahromi, Decolorization of Azo Dye CI Direct Black 38 by Photocatalytic Method Using TiO 2 and Optimizing of Process, APCBEE Proced., 10(2014), 115-119.
  13. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O'shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125(2012), 331-349.
  14. M. Ahmed, Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of methylene blue dye, J. Photochem. Photobiol. A: Chem., 238(2012), 63-70.
  15. M. Ahmed, E.E. El-Katori, Z.H. Gharni, Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method, J. Alloy Compoun., 553(2013), 19-29.
  16. G. Zhu, K. Zhou, Preparation and characterization of nitrogen-doped titanium dioxides, Sci. China Series B: Chem., 50(2007), 212-216.
  17. G. Mei Li, Z. Xiao-Dong, L. Chun-Tian, J. Guo-Zhi, Mechanism of visible photoactivity of F-doped TiO2, Chinese Phy. Lett., 27(2010), 057103.
  18. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, Fabrication of Ni-doped TiO2 thin film photoelectrode for solar cells, Sol. Energy, 106(2014), 159-165.
  19. C. Zhao, X. Shu, D. Zhu, S. Wei, Y. Wang, M. Tu, W. Gao, High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases, Super. Microstruct., 88(2015), 32-42.
  20. V.K. Gupta, T. Eren, N. Atar, M.L. Yola, C. Parlak, H. Karimi-Maleh, CoFe2O4@ TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos, J. Mol. Liquid, 208(2015), 122-129.
  21. B.M. Almeida, M.A. MeloJr, J. Bettini, J.E. Benedetti, A.F. Nogueira, A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity, Appl. Surface Sci., 324(2015), 419-431.
  22. M.H. Zori, Synthesis of TiO2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue, J. Inorg. Organometall. Poly. Mater., 21(2011), 81-90.
  23. M. Olya, M. Vafaee, M. Jahangiri, Modeling of acid dye decolorization by TiO2–Ag2O nano-photocatalytic process using response surface methodology, J. Saudi Chem. Soc., (2015).
  24. Y. Huang, W. Ho, Z. Ai, X. Song, L. Zhang, S. Lee, Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO, Appl. Catalysis B: Environ., 89(2009), 398-405.
  25. M. Karbassi, A. Nemati, M.H. Zari, K. Ahadi, Effect of Iron Oxide and Silica Doping on Microstructure, Bandgap and Photocatalytic Properties of Titania by Water-in-Oil Microemulsion Technique, Transact. Indian Ceramic Soc., 70 (2011), 227-232.
  26. E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga, Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye, J. Taiwan Instit. Chem. Eng., 44(2013), 270-278.
  27. Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Synthesis, characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation, App. Catalysis A: General, 411(2012), 139-145.
  28. C. Sahoo, A.K. Gupta, Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light, J. Environ. Sci. Health, Part A, 50(2015), 659-668.
  29. J. Kamalakkannan, V. Chandraboss, S. Prabha, S. Senthilvelan, Activated Carbon Loaded N, S co-doped TiO2 Nanomaterial and Its Dye Wastewater Treatment, Inter. Lett. Chem. Phy. Astron., 47(2015), 147-164.
  30. K. Seyyedi, M.A.F. Jahromi, Decolorization of Azo Dye CI Direct Black 38 by Photocatalytic Method Using TiO2 and Optimizing of Process, APCBEE Procedia, 10(2014), 115-119.
  31. Z. Abou-Gamra, M. Ahmed, Synthesis of mesoporous TiO2–curcumin nanoparticles for photocatalytic degradation of methylene blue dye, J. Photochem. Photobiol. B: Biology, 160(2016), 134-141.
  32. R.L. Narayana, M. Matheswaran, A.A. Aziz, P. Saravanan, Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination, Desalination, 269(2011), 249-253.
  33. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism, Ceramics Internat., 43(2017), 540-548.
  34. H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Fabrication of Fe-doped TiO 2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32(2016), 314-319.
  35. D. Wang, J. Li, G. Zhou, W. Wang, X. Zhang, X. Pan, Low Temperature Hydrothermal Synthesis of Visible-Light-Activated I-Doped TiO2 for Improved Dye Degradation, J. Nanosci. Nanotechnol., 16(2016), 5676-5682.
  36. A.T. Kuvarega, R.W. Krause, B.B. Mamba, Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation, J. Phy. Chem. C, 115(2011), 22110-22120.
  37. M.Y. Xie, K.Y. Su, X.-Y. Peng, R.J. Wu, M. Chavali, W.C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under visible light, J. Taiwan Instit. Chem. Eng., 70(2017), 161-167.