The Effect of Polyethylene Glycol and Nanoclay on the Rheological Behavior of Dispersing Cationic Polyurethane Nanocomposites


1 Department of Chemistry, Payame Noor University

2 Departments of Resin and Additives, Institute for Color Science and Technology


Cationic waterborne polyurethane as a new dispersing polymer was synthesized by using relatively hydrophilic polyols. Dispersing cationic polyurethane (DCPU) nanocomposites were prepared using isophorone diisocyanate (IPDI), polyethylene glycol (PEG) with different molecular weights (Mn=200, 400, 600,and1000 g/mol), N-methyl diethanolamine (MDEA), dibutyltin dilaurate (DBTDL) and different percentages of nanoclay (1, 3, and 5%). The aim was to study the effect of polyol molecular weight and weight percentage of nanoclay on the extent of polarity, polymer flexibility, dispersibility of nanocomposite in aqueous phase, thermal stability and rheological behavior of the polymer. FT-IR and 1H-NMR spectroscopy, Contact angle and thermal and rheometric analyzes were used to characterize the synthesized polymer and related nanocomposites. The results revealed that by increasing the molecular weight of polyethylene glycol, the following changes will be observed in the produced polymeric nanocomposites: particle size reduction, increase in dispersibility, contact angle, thermal stability and viscosity, as well as increase in semi-plasticity and elasticity properties of nanocomposites.