The Potential of Gundelia Seeds Waste as an Emerging Sustainable Adsorbent for Dye-Polluted Water Treatment

Noor Albayati¹, Manal Mohammed¹, Hind Ahmed², Mohammed Kadhom^{2,*}

¹ Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, 10071, Iraq.

² Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad, 10081, Iraq

* Corresponding Author Email: <u>kadhom@kus.edu.iq</u>, <u>mohammedkadhom@gmail.com</u>

Table S-1. Kinetics models used in this study			
Kinetics model	Equation	Constant	
Zero Order	$(q_t - q_e) = q_e - K_Z t]$	K_Z is the rate constant of zero-order adsorption (mg/g.min)	
Pseudo-First Order	$log(q_e - q_t) = log q_e - \frac{K_1}{2.303}t$	K ₁ is the rate constant of pseudo-first- order adsorption (per min.)	
Pseudo-Second Order	$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$	K ₂ is the pseudo-second-order rate constant (per min.)	
Elovich	$[q_t = \alpha + \beta \ln t]$	α is the initial adsorption rate (mg/g) and β is adsorption constant (mg/g.min)	
Intraparticle Diffusion	$q_t = K_p t^{0.5} + C$	K_p and C are intra-particle diffusion rate constant (mg/g. min0.5) and the thickness of the boundary layer (mg/g), respectively	

Supplementary Information

Isotherm	Equation	Constant
	-	
Langmuir	$\left[\frac{c_{e}}{q_{e}} = \frac{1}{K_{L}q_{L}} + \frac{c_{e}}{q_{L}}\right]$	K _L : Langmuir constant related to the free energy of adsorption
		(L/mg)
Freundlich	$\left[\ln q_e = \ln K_F + \frac{1}{n_f} \ln c_e\right]$	K _F : is constant indicative of the relative adsorption capacity of
		adsorbent (mg/g).
		$\frac{1}{n_f}$: is the constant indicative of the intensity of the adsorption
		process
Temkin	$[q_e = q_T \ln K_T + q_T \ln c_e]$	$q_T = \frac{RT}{b_T}$: is the Temkin isotherm parameter (mg/g). where
		$T(K^{o})$ is the absolute temperature, R is the universal gas
		constant, K_T (L/mg) is the equilibrium binding constant, and b_T
		(J/mol) is related to the heat of adsorption.

Table S-2. Equations of the adsorption isotherms.

S1- Dose of 0.02 g

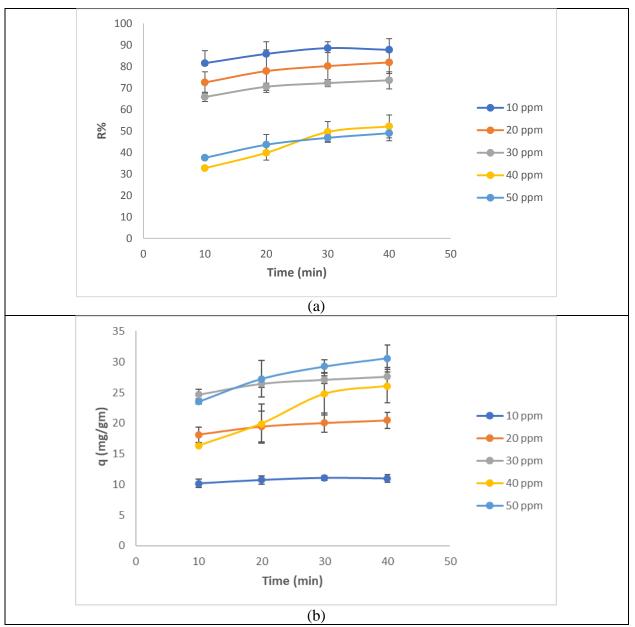


Figure S1. The effect of time on (a) removal rate and (b) adsorption capacity at different initial dye-solution concentrations using a dose of 0.02 g.

S2- Dose of 0.04 g

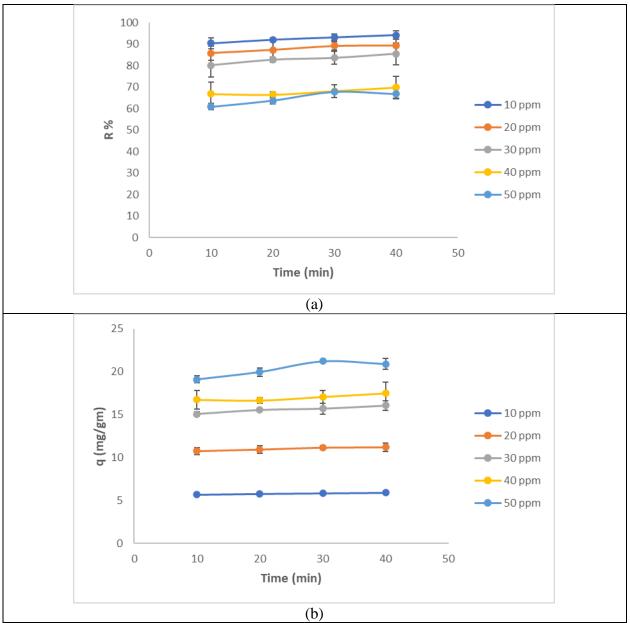


Figure S2. The effect of time on (a) removal rate and (b) adsorption capacity at different initial dye-solution concentrations using a dose of 0.04 g.

S3- Dose of 0.06 g

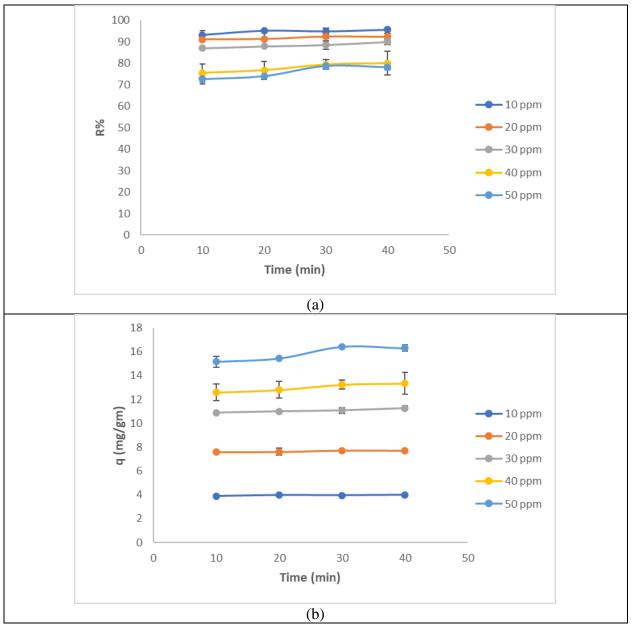


Figure S3. The effect of time on (a) removal rate and (b) adsorption capacity at different initial dye-solution concentrations using a dose of 0.06 g.

S4- Dose of 0.08 g

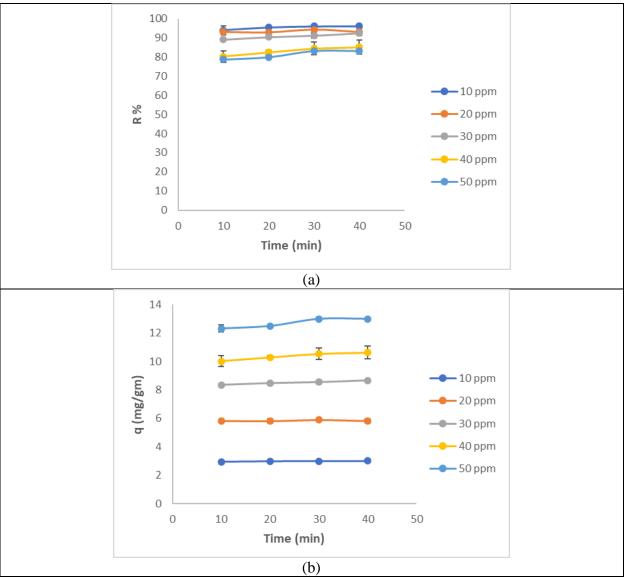


Figure S4. The effect of time on (a) removal rate and (b) adsorption capacity at different initial dye-solution concentrations using a dose of 0.08 g.

S5- Dose of 0.1 g

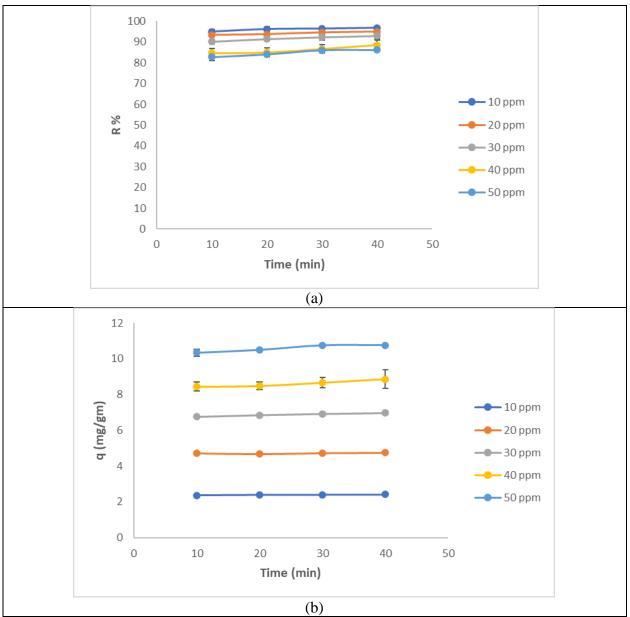


Figure S5. The effect of time on (a) removal rate and (b) adsorption capacity at different initial dye-solution concentrations using a dose of 0.1 g.