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atural camouflage, seamlessly blending animals with their surroundings, 

remains challenging for artificial counterparts. Some animals exhibit 

near-permanent camouflaging, a product of decades of genetic evolution 

with their environment. At the same time, chameleons and octopuses achieve the 

ideal desired instantaneous camouflaging, unlike the heuristic-based approach of 

the artificial camouflage design. To attain similar perfection seen in animals, an 

evolutionary approach to artificial camouflage pattern development is necessary. 

Developing nations, primarily adopting the camouflage patterns of their more 

developed counterparts, may find themselves at a disadvantage. This study 

proposes a Genetic Algorithm (GA)-based approach to aid designers in developing 

countries in crafting effective camouflage. By parameterising heuristic 

development as a procedural texturing problem and evolving colour assignments 

iteratively, this approach aims to emulate the evolutionary process seen in nature. 

Using the K-means algorithm, genes are initialised based on background image 

colours, exploring factorial combinations to achieve optimal camouflage. With a 

maximum of 100 iterations and interactive feedback, the method addresses 

Nigeria's specific case and offers a faster development solution than developed 

nations' approaches. This evolutionary approach could revolutionise artificial 

camouflage development worldwide. Prog. Color Colorants Coat. 17 (2024), 393-

405© Institute for Color Science and Technology. 
 

 

 

 

 

 

 

 

 

1. Introduction 

Researchers have defined camouflaging as using 

disruptive contour on a target to blend it with the 

background, making it harder to detect or hit [1, 2]. 

This idea of camouflaging occurs effortlessly in nature. 

It has evolved for some animals, mainly to prey on 

other animals or avoid being preyed upon. Depending 

on the type of animal, the frequency of blending with 

the background environment varies from permanent to 

seasonal to weeks to minutes to instantaneous. Thus 

contributing to one of the natural strategies for animal 

survival in their habitat [3]. This blending with the 

background without being detected resonates with the 

military's desire for stealthiness. During and after the 

Second World War, various camouflage schemes were 

used for aircraft and ground vehicles in different 

theatres of war [4]. Beyond the world wars, 

camouflage patterns have achieved a successful track 

N 
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record in modern warfare. 

Despite the successes, the ideal desirable military 

camouflage is yet to be achieved [5], for instance, the 

chameleon and octopus's adaptive skin patterns  

and colours, the abstract desire for camouflage that 

makes total disappearance. As such, several countries 

have continuously invested heavily in research and 

development toward realising patterns suited for their 

geographical location. Many developing countries fall 

short in this by only adopting the camouflage patterns of 

either their colonial master or other developed countries, 

as seen in the case of Nigeria's military personnel wore 

the British desert Disruptive Pattern Material (DPM) 

camouflage in 2011 in the Darfur region of Sudan, and 

vertical lizard camouflage pattern influenced by the 

French and Portuguese designs during the Nigerian Civil 

War [6, 7]. These adopted camouflage patterns are 

necessarily not optimal for the country. However, the 

scientific resources, rigorous development process, and 

perhaps others might be the inhibiting factor. Given the 

current rise in world temperature, which is resulting  

in a shift in geographical features, there are speculations 

that previous military camouflages might become 

ineffective, thus necessitating the rapid development of 

new military camouflages worldwide. Over the years, 

the military camouflage research and development 

process has evolved to the following [8].  

1. The collection of earthly samples of background 

environments that are widespread across regions,  

2. The extraction of n numbers of dominating colours 

via laboratory processes,  

3. Designing of seamless contours  

4. Assigning the extracted colours to the contours  

5. Testing designed camouflage patterns against 

backgrounds  

6. Getting human eye-tracking feedback.  

Recent advances in image processing and computer 

vision have presented the possibility of extracting both 

high- and low-level features from images like scenes and 

colour spectrums [9, 10]. This has led researchers to opt 

for collecting quality images and non-destructively 

extracting desired features using various algorithms [5], 

contrary to collecting earthly samples and using a 

laboratory extraction process afterwards, specifically, 

colourimeter, as demonstrated in [8]. The most obvious 

advantage of using images instead is the reusability and 

the non-destructiveness of the process. The other 

advantages include the speed of achieving desired 

results; in the presence of good computing resources, 

image-based samples achieve results faster compared to 

earthly samples in the laboratory and, likewise, the 

ability to extract a spectrum of colours at once, which 

will require several measurements for a colourimeter to 

obtain a representative colour value [11]. 

The design of seamless contours for the camouflage 

patterns lies in the heuristic creativity of the designer 

[8] on disruptive contour design. This is usually 

achieved with vector software such as Inkscape. Jong 

proposes extracting disruptive contour from high-

resolution images of granite and pine trees, oak tree 

bark, and their colony using edge detection techniques 

in image processing software [8]. However, this 

manual heuristic design method is challenging to 

parametrise for algorithmic optimisation. Genetic 

algorithm (GA) is a popular algorithm that has been 

proven to optimise heuristics across multiple domains 

like robot path-planning and design [12-14]. Reynolds 

[14] proposed using procedural texture synthesis for 

camouflage design parameterisation and genetic 

programming (GP) as the optimisation technique. 

However, seamlessness is not considered for the 

camouflage generated, perhaps because there was no 

motive for transferring onto fabric. 

Generally, GA is an example of evolutionary 

computation inspired by Darwinian selection, mutation, 

and crossover concepts. It is a metaphorical 

representation of the idea of genetic reproduction in 

biology. It begins with initialising the population of 

candidate solutions (often called individuals or 

chromosomes). Each individual represents a set of 

features relating to the problem. This individual evolves 

over successive generations to better fit a fitness 

function, resulting in a fitness value representing the 

solution's quality. The higher the fitness value, the 

higher the quality of the solution. The best individuals 

are selected to constitute new parents. The parents mate 

to generate offspring expected to bear better quality 

than their parents, thus suppressing the low-quality 

individuals. However, this generated offspring from the 

selected parents only has the characteristics of its 

parents and without changes, including the drawbacks 

in its parents. Crossover and mutation prevent offspring 

from being identical to their parent, achieved by 

injecting randomness during mating and gene levels. 

This continues until specific stopping criteria, such as 

acceptable solution or number iterations, are met. 

Figure 1 shows the complete flow chart that includes 

the sequence of intermediate processes. 
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Figure 1: Flow chart illustrating the processes in GA. 

 

Procedural texturing techniques are dynamic and 

parametric (with underlying mathematics and 

algorithms), which means that designers generate 

complex and adaptive patterns that can be mapped onto 

a shape as a texture. It often procedurally utilises various 

noise algorithms like Perlin, fractal, Voronoi, and 

Worley Noises in combination with mathematical 

operations to achieve a natural look at the resulting 

pattern [15] improved upon Perlin noise, providing 

smoother gradients and better continuity, enhancing the 

visual quality of procedural patterns. Lagae and Dutré, 

2008 demonstrated the application of Voronoi patterns 

in disruptive applications [16]. Procedural texture can 

either be defined programmatically or visually. For 

instance, Reynolds [14] defines programmatic texture 

synthesis as modules of program snippets using Open 

BEAGLE [17], like the definition available in Three.js, a 

cross-browser JavaScript library. At the same time, 

applications like Blender (USA) provide programmatic 

and visual pallets to connect procedural texture elements 

as nodes and edges. 

In computer graphics, seamlessness is usually 

handled digitally. However, aside from adding a seam to 

strategically locate the seamline, the textured shape is a 

significant determinant of the nature of the seam. For 

instance, a geometrically unwrapped open-ended 

cylinder will only amount to seamlessness in one axis 

(either horizontally or vertically). Whereas geometrically 

unwrapping torus results in seamlessness in all 

directions, one axis could be more stretched [18], as 

shown in Figure 2. However, Vincent [19] presents a 

unique formulation to achieve a square flat torus that 

remains undistorted when unwrapped. This work 

leverages the continuity of a flat torus to achieve 

seamlessness. That is, the procedural texturing is 

generated on a torus (with minimal distortion); therefore, 

the designer does not need to worry about the 

seamlessness of generated camouflage. Adopting this 

technique to achieve seamlessness is novel to this 

domain, as previous work tends to achieve seamlessness 

manually.

 

 

 

 

 

(a) (b) (c) (d) 

 

(e) 
Figure 2: Illustrating the unwrapping procedure to elucidate how it translates to seamlessness. 
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Like other processes, assigning colours to the 

camouflage contours has often been a designer heuristic. 

Unfortunately, the unforgiving part is the delayed 

feedback on whether the resulting colour assignment is 

perfectly concealed in the background, as there are k 

factorial ways (k!) to assign k colours. A near-natural 

way to assign k colours while giving the designer some 

control and active feedback is an interactive evolution 

proposed in [14]. The interactiveness is formulated as an 

interface that overlays each of the generated camouflage 

patterns (with assigned colours), called populations, 

against the representative background for the designer to 

either rate or filter based on blending. In [14], the 

interaction proposed is a series of mouse clicks to mark 

the five (5) most conspicuous populations for deletion 

out of the ten (10) presented. The properties (procedural 

textures), called genes that make up the marked and the 

remaining surviving populations, are then crossed over 

and mutated to reproduce new offspring that replace 

lower-fitness individuals. These newly generated 

populations constitute the new evolution. The cycle of 

interaction and evolution continues until the resulting 

camouflage pattern achieves a certain degree of 

blending. Typically, in [14], this satisfactory 

concealment was observed after 1000 evolutions, that is, 

5,000 mouse clicks. 

Therefore, the following is our new proposed 

approach that replaces the earlier conventional 

approaches. 

1. Collecting high-resolution images of representative 

background 

2. Algorithmic extraction of low-level features 

3. Parameterized designing of seamless contours  

4. Evolutional-based assignment of features to the 

contours  

5. Realtime interactive camouflage pattern design 

testing against the background 

Therefore, this work proposes an assistive 

mechanism that is GA-based to evolve camouflage 

design colour assignment and proportioning as a 

designer designs interactively. The assistive pipeline's 

composition starts with features extracted from high-

resolution images of the desired representative 

background to blend using the K-Means algorithm and 

interactively evolve using a GA parametrised as a 

procedural texturing problem. This work is specifically 

novel for the end-to-end interactive camouflage design, 

resulting in a seamless design that can be directly 

printed on fabric.  

 

This paper is divided into four sections. Section 1 

begins with the introduction of the motivation behind 

the research. The research methodology and the 

materials are introduced in Section 2, which briefly 

describes the data source, the feature extraction, 

procedural texturing, algorithms and the experimental 

setup. Section 3 discusses the results of the dominant 

colour extraction with the K-means algorithm, the 

resulting camouflage design from GA, and the 

designed camouflage's printing. Finally, Section 4 

presents the conclusions and recommends possible 

directions for future studies. 

 

2. Experimental 

This section details the implementation of the proposed 

replacement to the earlier conventional approaches 

mentioned. Starting with the collection of 

representative samples from Nigeria’s environment. 

Then, a machine learning algorithm was used to extract 

five (5) dominating colours from each sample. 

Afterwards, a detail of the procedural synthesis-based 

camouflage generation was generated with Blender 

software, followed by the torus-based seamlessness 

and, finally, the GA-based evolution of camouflage 

design colour assignment and proportioning. 

 

2.1. Sample collection 

We propose collecting high-resolution images rather 

than earthly samples like tree bark, leaves, and soil 

from the representative areas. This study draws a case 

study on the Nigerian landscape; therefore, the 

representative areas are the geographical distribution of 

Nigeria. Geographically, Nigeria is in the West Africa 

region (between latitudes 4.1027° and 13.7994° N  

and longitudes 2.7991° and 15.1005° E) with 36  

states widespread across the six (6) geopolitical  

zones, namely, North-Central, North-West, North- 

East, South-South, South-West, and South-East. 

Climatically, she is divided into Sahel, Savanna, 

Tropical Rainforest, and Coastal, starting from  

the North to the South, as shown in Figure 3. We 

collect high-resolution images across the zones 

mentioned above. Specifically, these selected locations 

are the potential military drill sites across the 

geopolitical zones in Nigeria. For instance,  

the National Youth Service Corps (NYSC) Campsites 

are military-controlled camps across 36 states.  
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Figure 3: Map of Nigeria's geopolitical and climatic 

distribution. 

 

All Nigerian graduates below the age of thirty (30) 

years have been on strategic deployment into any of the 

states since 1973 to engage in three (3) weeks of 

military drill as an avenue to facilitate the reconciliation, 

reconstruction, and rebuilding of the nation after the civil 

war [20, 21]. Some of these high-resolution images are 

sourced from these campsites and beyond. Depending on 

the region, the images span from tree features like roots, 

barks, branches, and leaves to grasses of varying 

colours. Figure 4 shows a few samples with 

homogeneous features. 

 

2.2. Feature extraction and extraction of 

dominating colours 

Replacing earthly samples with high-resolution images 

negates the need for experimental laboratory 

procedures for extracting colour constituents, which 

was a significant overhead due to the need to await the 

result. However, we extract low-level features from 

each high-resolution image as an alternative. RGB 

channels were vectorised for each image, as illustrated 

in Figure 5, and clustered into K dominant colours 

using an unsupervised machine learning algorithm 

called K-Means, as shown in Figure 5. The K-means 

algorithm works by grouping similar data points into a 

K-predetermined number of clusters, where each 

cluster is represented by its centre, called a centroid. In 

this context, given a background image of height (H), 

width (W) and Channel (C), in this case for coloured 

(Red, Green, and Blue) image C =1, 2 and 3, the 

resulting vectorised image feature per channel is a 

H*W vector. For example, the input-coloured 

background image in Figure 5 is 3072 × 4080, and the 

resulting vector per channel is a [12.533.760 × 3]. The 

K-means problem is to group this feature into K 

clusters. For instance, to design a 5-colour military 

camouflage, the K = 5; therefore, the result is a 

spectrum of 5 dominant colours in terms of the RGB 

values and frequency of occurrence, as shown in 

Figures 6 and 7. 

 

 

Figure 4: Samples of sourced high-resolution images that spans from tree features like roots, barks, branches, and 

leaves, to grasses. 
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Figure 5: Illustration of the splitting of the RGB and vectorisation of the input background image. 

 

 
Figure 6: Clustering the vectorised feature into dominant colours using K-Means (K = 5). 

 
 

 
Figure 7: Illustration of spectrum of 5 dominant colours in term of the RGB values and frequency of occurrence in the 

input background image. 
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2.3. Generation of camouflage 

Aside from the need to draw camouflage contour, 

designers also ensure seamlessness. Rather than using 

vector software to achieve this manually, we adopt 

procedural texturing, thus enabling the parametrisation 

of the camouflage pattern design while still giving the 

human designer flexibility. In this work, parametrisation 

is achieved via tuning the parameters for noise and 

Voronoi texture nodes that evaluate a fractal Perlin and 

Worley noise, respectively. In this work, we leveraged 

Blender software's flexibility in designing procedural 

textures visually and programmatically. The desired 

pattern is carefully designed by visually tuning the 

parameters of the abovementioned noise algorithms. At 

the same time, the colour proportion and order of colour 

assignment are programmatically assigned as the genes 

of the GA. The details of the input-output for both noises 

are provided in Blender online documentation [22]. For 

example, setting the parameters in Figure 8a and feeding 

the colour – output of the noise texture node into vector 

– input of the Voronoi texture node and then rendering 

on torus shape results in the colour-segmented seamless 

patterns in Figure 8b. 

 

2.4. Genetic algorithm-based evolution of the 

camouflage 

Even after the colour-segmented pattern has been 

carefully designed, the arrangement and the proportion 

of colours in the patterns are crucial. Manually 

tweaking this arrangement and proportion is simpler 

for a few colour combinations. However, as the 

number increases, the manual adjustment becomes 

forbiddingly unrealistic, thus requiring a more natural 

and optimal approach. For instance, for a two-colour 

camouflage, the possible ways of arrangement are two 

factorial (2), and the proportion can be varied infinitely 

in the range of 0 – 1 between the two colours. 

However, by discretising into a step of 0.1, 11 possible 

complementary values can be assigned between the 

two colours, thus making a maximum of 22 trials. 

Nevertheless, for a typical five-colour camouflage, 

120 ways of arrangement exist. A maximum of 1200 

trials is possible when discretised in a similar version. 

Of course, discretisation is an approximation often 

accompanied by a problem of loss of details. In this 

work, the GA is employed to search and optimise the 

arrangement and proportion of each colour for the k-

colours camouflage. Although GA can evolve the 

whole procedural texturing, the resulting camouflage 

pattern evolved in previous work [14] is entirely fitted 

for the given background image. Therefore, we opted 

to evolve only the texture node for colour ordering and 

proportioning while giving some control to the 

designer's expertise.  

The GA population is initialised as the proportion of 

factorial of K number of colours clustered by the K-

means algorithm from the background image. The GA 

then uses a given fitness function to evaluate each 

individual in this population. The lower-fitness 

individuals in the population are then replaced by new 

offspring arising from the crossover and mutation of the 

more viable individuals. This technically implies 

rearrangement and re-proportioning of the colours based 

on the better ones. Over time, the population is expected 

to contain the populations that improve fitness.  

 

 
(a) 

 
(b) 

Figure 8: Connecting (a) colour – output of noise 

texture node into vector – input of Voronoi texture node 
to result in (b) colour-segmented patterns. 
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2.5. Interactive evaluation of the camouflage 

The role of the fitness function in this work is played 

by a human observer who visually compares the 

quality of the evolved colour assigned to the 

camouflage pattern and how they best blend with the 

background. This is achieved via a web-based user 

interface (UI) where the top ten individuals are 

randomly overlaid on the background image, as shown 

in Figure 11. Immediately, the individuals are drawn, 

and incremental counting starts for each individual. 

The observer's task is to locate and click the patterns in 

the order of their conspicuousness. Once a particular 

individual is clicked, its corresponding incremental 

counting stops, thus translating to low fitness for the 

first clicked individual and highest fitness for the last 

clicked individual. Afterward, the observer clicks the 

evolve generation button to invoke the GA to use the 

new fitness to evolve the next individual through the 

earlier-mentioned crossover and mutation. The new top 

10 individuals from the next generation is then 

presented to the observer through the UI for evaluation. 

This iterative process continues until a satisfactory 

blending is achieved. 

 

 

Figure 9: Interactive user interface for the observer to 

evaluate the blending of the top 10 individuals.  

2.6. Experimental setup  

This work opted for a 5-colour camouflage pattern 

design. Therefore, the K = 5 for the K-Means 

algorithm. The selected high-resolution background 

images have varying dimensions with homogeneous 

content. The primary computational resource used for 

this experiment is an Intel(R) Corei7 @ 2.80GHz 

(RAM 16GB) running Windows 10. We utilised open-

source software like Blender 3.0 for procedural 

texturing and Python 3.7 as the programming language. 

The Python-specific library for GA, K-Means, image 

processing, and web backend are the implementations 

provided by PyGAD [23], scikit-learn [24], OpenCV 

[25], and Flask [26], respectively. The parameter for 

the GA includes the fitness function, which is a 

function that computes the normalisation of the fitness 

provided by the human observer; the number of 

individuals in a population is set to 120, and the 

number of genes per individual is 5. On average, it 

took a maximum of 100 generations to achieve a 

satisfactory camouflage pattern. 

 

3. Results and Discussion 

This section presents the results of applying the 

described methods to the Nigerian environment. 

Initially, six high-resolution images were carefully 

selected, each representing a geopolitical zone, sourced 

from various NYSC camps and military barracks 

across the nation. Using the proposed k-means 

algorithm, five dominant colours were extracted from 

each image, resulting in 30 colours across all regions. 

These colours and their corresponding Red-Green-Blue 

(RGB) values and dominance proportions are detailed 

in Table 1. 

Analysis of the extracted colours revealed distinct 

trends among the regions. The South-West (SW), South-

South (SS), and South-East (SE) regions predominantly 

exhibited shades of green, indicative of their coastal and 

tropical rainforest climates. Conversely, the Northeast 

(NE), North-Central (NC), and North-West (NW) 

regions were characterised by shades of brown, 

reflective of their desert and savannah landscapes, with 

occasional variations of white likely attributed to 

skylight dilution. The time required for colour extraction 

varies based on image resolution and computational 

power. Table 2 illustrates the extraction times for images 

of different resolutions across two different PCs. 

Notably, our proposed approach extracted five dominant 
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colours from a 3072×4080 RGB image in a maximum of 

3 minutes and 16 seconds, significantly outperforming 

the 12-hour timeframe required by the colourimeter 

technique [8]. 

Additionally, achieving a satisfactory camouflage 

design from a background image involved a maximum 

of 100 iterations of GA-based evolution, with up to 5 

hours spent per design. Figure 10a depicts a 

background image with dominant colours, while Table 

3 presents the top 10 individuals from the initial 

generations. After 50 iterations and interactive 

feedback, Figure 10b showcases one of the resulting 

satisfactory camouflage designs, validated through 

application on a 3D army dress (Figure 11) and 

subsequent heat transfer printing onto fabric (Figures 

12a and 12b).  

The fabric printing process utilised EPSON 

SureColor SC-F540 and JC-7B Semi-automatic 

hydraulic double stations heat press machine. 

Following colour calibration with Pantone, the 

seamless camouflage design was printed onto paper 

and transferred onto the fabric using the heat press 

machine at 200°C for 60 seconds, resulting in the final 

printed camouflage design on fabric (Figure 12b). 

 

       

(a)                                                                    (b) 

Figure 10: (a) Input background image and (b) Output camouflage design from satisfactory generation. 

 

 
Figure 11: Verifying the blending by applying the designed camouflage on a 3D military uniform with the source image 

as the background. 
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Table 1: The 30 extracted dominant colours. 

S/N Sample Region 
Colour-

Index 
R G B RGB 

% of occurrence 

per image 

1 

1 SW 

K = 1 160 173 94 
 

26.69 

2 K = 2 25 28 6 
 

16.30 

3 K = 3 197 208 146 
 

16.59 

4 K = 4 78 87 25 
 

18.42 

5 K = 5 123 136 55 
 

21.99 

6 

2 NE 

K = 1 169 152 144 
 

27.26 

7 K = 2 52 38 31 
 

8.91 

8 K = 3 104 86 77 
 

21.08 

9 K = 4 138 120 111 
 

28.91 

10 K = 5 215 191 173 
 

13.84 

11 

3 NC 

K = 1 208 198 184 
 

14.00 

12 K = 2 153 129 110 
 

31.49 

13 K = 3 120 98 84 
 

20.59 

14 K = 4 179 160 140 
 

27.05 

15 K = 5 67 55 49 
 

6.87 

16 

4 SE 

K = 1 154 167 124 
 

24.01 

17 K = 2 41 45 21 
 

14.55 

18 K = 3 195 201 168 
 

14.20 

19 K = 4 119 133 87 
 

25.21 

20 K = 5 83 94 52 
 

22.03 

21 

5 SS 

K = 1 81 92 21 
 

8.89 

22 K = 2 239 241 236 
 

28.21 

23 K = 3 203 184 140 
 

11.55 

24 K = 4 166 161 79 
 

22.40 

25 K = 5 126 146 43 
 

28.96 

26 

6 NW 

K = 1 192 152 116 
 

53.07 

27 K = 2 101 82 53 
 

7.68 

28 K = 3 174 182 189 
 

22.97 

29 K = 4 142 119 94 
 

9.39 

30 K = 5 46 39 22 
 

6.89 
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Table 2: Duration taken to extract 5 colours based on PC configuration and image resolution. 

Sample 
Image Resolution 

(H × W × RGB) 

Intel(R) Corei7 @ 2.80GHz 

(RAM 16GB) 

Windows 10 

Intel(R) Xeon(R) @ 2.20GHz 

(RAM 12.6GB) 

Ubuntu 22.04.2 LTS 

1 3072×4080 196.87 secs 105.78 secs 

2 4080×3072 152.18 secs 103.22 secs 

3 3072×4080 196.00 secs 128.85 secs 

4 4080×3072 140.50 secs 105.12 secs 

5 4080×3072 140.60 secs 121.54 secs 

 

Table 3: Sample of intermediate evolutional generation. 

Generation 0 

(Top 1 -10 individual) 

Generation 1 

(Top 1 -10 individual) 

    

    

    

    

    

 

 
 

(a) (b) 

Figure 12: Seamlessly tiled camouflage–like pattern generated. 
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4. Conclusions 

This study introduces a Genetic Algorithm (GA)-based 

approach tailored to support camouflage research and 

development in developing countries, offering a 

customizable alternative to existing patterns. Notably, 

it addresses the anticipated challenges of climate 

change, which may render current camouflage 

ineffective. 

This approach accelerates development by utilizing 

high-resolution image samples from diverse 

environments, procedural texturing, and GA-assisted 

colour arrangement and proportioning. Analysis of six 

samples from Nigeria's geopolitical regions 

demonstrates promising outcomes, including the 

correlation between extracted colours and regional 

climatic features, expedited development compared to 

conventional methods, particularly in colour extraction, 

and the ability to generate GA-based camouflage 

designs within five hours. Moreover, to facilitate 

accessibility for developing countries, all techniques 

and software utilized are freely available, including the 

PyGAD library for GA, the scikit-learn library for K-

means clustering, and Blender software for procedural 

texturing and rendering. This study emphasizes the 

importance of collecting undiluted, homogeneous 

image samples and underscores the necessity for 

rigorous field testing before deploying evolved 

camouflage designs in combat scenarios. 
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