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Abstract  

Natural camouflage, seamlessly blending animals with their surroundings, remains 

challenging for artificial counterparts. Some animals exhibit near-permanent 

camouflaging, a product of decades of genetic evolution with their environment. At the 

same time, chameleons and octopuses achieve the ideal desired instantaneous 

camouflaging, unlike the heuristic-based approach of the artificial camouflage design. To 

attain similar perfection seen in animals, an evolutionary approach to artificial 

camouflage pattern development is necessary. Developing nations, primarily adopting the 

camouflage patterns of their more developed counterparts, may find themselves at a 

disadvantage. This study proposes a Genetic Algorithm (GA)- -based approach to aid 

designers in developing countries in crafting effective camouflage. By parameterising 

heuristic development as a procedural texturing problem and evolving colour assignments 

iteratively, this approach aims to emulate the evolutionary process seen in nature. Using 

the K-means algorithm, genes are initialised based on background image colours, 
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exploring factorial combinations to achieve optimal camouflage. With a maximum of 100 

iterations and interactive feedback, the method addresses Nigeria's specific case and 

offers a faster development solution than developed nations' approaches. This 

evolutionary approach could revolutionise artificial camouflage development worldwide. 

 

Keywords: Camouflage, Colour assignment, Genetic Algorithm, K-Mean, Interactive 

Design, Procedural Texture. 

 

1. Introduction 

Researchers have defined camouflaging as using disruptive contour on a target to blend it 

with the background, making it harder to detect or hit [1, 2]. This idea of camouflaging 

occurs effortlessly in nature. It has evolved for some animals, mainly to prey on other 

animals or avoid being preyed upon. Depending on the type of animal, the frequency of 

blending with the background environment varies from permanent to seasonal to weeks 

to minutes to instantaneous. Thus contributing to one of the natural strategies for animal 

survival in their habitat [3]. This blending with the background without being detected 

resonates with the military's desire for stealthiness. During and after the Second World 

War, various camouflage schemes were used for aircraft and ground vehicles in different 

theatres of war [4]. Beyond the world wars, camouflage patterns have achieved a 

successful track record in modern warfare. 

Despite the successes, the ideal desirable military camouflage is yet to be achieved [5], 

for instance, the chameleon and octopus's adaptive skin patterns and colours, the abstract 

desire for camouflage that makes total disappearance. As such, several countries have 
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continuously invested heavily in research and development toward realising patterns 

suited for their geographical location. Many developing countries fall short in this by 

only adopting the camouflage patterns of either their colonial master or other developed 

countries, as seen in the case of Nigeria's military personnel wore the British desert 

Disruptive Pattern Material (DPM) camouflage in 2011 in the Darfur region of Sudan, 

and vertical lizard camouflage pattern influenced by the French and Portuguese designs 

during the Nigerian Civil War [6, 7]. These adopted camouflage patterns are necessarily 

not optimal for the country. However, the scientific resources, rigorous development 

process, and perhaps others might be the inhibiting factor. Given the current rise in world 

temperature, which is resulting in a shift in geographical features, there are speculations 

that previous military camouflages might become ineffective, thus necessitating the rapid 

development of new military camouflages worldwide. Over the years, the military 

camouflage research and development process has evolved to the following [8].  

(1) the collection of earthly samples of background environments that are widespread 

across regions,  

(2) the extraction of n numbers of dominating colours via laboratory processes,  

(3) designing of seamless contours  

(4) assigning the extracted colours to the contours  

(5) testing designed camouflage patterns against backgrounds  

(6) getting human eye-tracking feedback.  

Recent advances in image processing and computer vision have presented the possibility 

of extracting both high- and low-level features from images like scenes and colour 

spectrums [9, 10]. This has led researchers to opt for collecting quality images and non-



 

5 
 

destructively extracting desired features using various algorithms [5], contrary to 

collecting earthly samples and using a laboratory extraction process afterwards, 

specifically, colourimeter, as demonstrated in [8]. The most obvious advantage of using 

images instead is the reusability and the non-destructiveness of the process. The other 

advantages include the speed of achieving desired results; in the presence of good 

computing resources, image-based samples achieve results faster compared to earthly 

samples in the laboratory and, likewise, the ability to extract a spectrum of colours at 

once, which will require several measurements for a colourimeter to obtain a 

representative colour value [11]. 

The design of seamless contours for the camouflage patterns lies in the heuristic 

creativity of the designer [8] on disruptive contour design. This is usually achieved with 

vector software such as Inkscape. Jong proposes extracting disruptive contour from high-

resolution images of granite and pine trees, oak tree bark, and their colony using edge 

detection techniques in image processing software [8]. However, this manual heuristic 

design method is challenging to parametrise for algorithmic optimisation. Genetic 

algorithm (GA) is a popular algorithm that has been proven to optimise heuristics across 

multiple domains like robot path-planning and design [12-14]. Reynolds [14] proposed 

using procedural texture synthesis for camouflage design parameterisation and genetic 

programming (GP) as the optimisation technique. However, seamlessness is not 

considered for the camouflage generated, perhaps because there was no motive for 

transferring onto fabric. 

Generally, GA is an example of evolutionary computation inspired by Darwinian 

selection, mutation, and crossover concepts. It is a metaphorical representation of the idea 
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of genetic reproduction in biology. It begins with initialising the population of candidate 

solutions (often called individuals or chromosomes). Each individual represents a set of 

features relating to the problem. This individual evolves over successive generations to 

better fit a fitness function, resulting in a fitness value representing the solution's quality. 

The higher the fitness value, the higher the quality of the solution. The best individuals 

are selected to constitute new parents. The parents mate to generate offspring expected to 

bear better quality than their parents, thus suppressing the low-quality individuals. 

However, this generated offspring from the selected parents only has the characteristics 

of its parents and without changes, including the drawbacks in its parents. Crossover and 

mutation prevent offspring from being identical to their parent, achieved by injecting 

randomness during mating and gene levels. This continues until specific stopping criteria, 

such as acceptable solution or number iterations, are met. Figure 1 shows the complete 

flow chart that includes the sequence of intermediate processes. 
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Figure 1. Flow chart illustrating the processes in GA. 

 

Procedural texturing techniques are dynamic and parametric (with underlying 

mathematics and algorithms), which means that designers generate complex and adaptive 



 

8 
 

patterns that can be mapped onto a shape as a texture. It often procedurally utilises 

various noise algorithms like Perlin, fractal, Voronoi, and Worley Noises in combination 

with mathematical operations to achieve a natural look at the resulting pattern [15] 

improved upon Perlin noise, providing smoother gradients and better continuity, 

enhancing the visual quality of procedural patterns. Lagae and Dutré, 2008 demonstrated 

the application of Voronoi patterns in disruptive applications [16]. Procedural texture can 

either be defined programmatically or visually. For instance, Reynolds [14] defines 

programmatic texture synthesis as modules of program snippets using Open BEAGLE 

[17], like the definition available in Three.js, a cross-browser JavaScript library. At the 

same time, applications like Blender (USA) provide programmatic and visual pallets to 

connect procedural texture elements as nodes and edges. 

In computer graphics, seamlessness is usually handled digitally. However, aside from 

adding a seam to strategically locate the seamline, the textured shape is a significant 

determinant of the nature of the seam. For instance, a geometrically unwrapped open-

ended cylinder will only amount to seamlessness in one axis (either horizontally or 

vertically). Whereas geometrically unwrapping torus results in seamlessness in all 

directions, one axis could be more stretched [18], as shown in Figure 2. However, 

Vincent [19] presents a unique formulation to achieve a square flat torus that remains 

undistorted when unwrapped. This work leverages the continuity of a flat torus to achieve 

seamlessness. That is, the procedural texturing is generated on a torus (with minimal 

distortion); therefore, the designer does not need to worry about the seamlessness of 

generated camouflage. Adopting this technique to achieve seamlessness is novel to this 

domain, as previous work tends to achieve seamlessness manually. 
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(a) (b) (c) (d) 

 

(e) 

Figure 2. illustrating the unwrapping procedure to elucidate how it translates to 

seamlessness. 

 

Like other processes, assigning colours to the camouflage contours has often been a 

designer heuristic. Unfortunately, the unforgiving part is the delayed feedback on 

whether the resulting colour assignment is perfectly concealed in the background, as 

there are k factorial ways (k!) to assign k colours. A near-natural way to assign k colours 

while giving the designer some control and active feedback is an interactive evolution 

proposed in [14]. The interactiveness is formulated as an interface that overlays each of 

the generated camouflage patterns (with assigned colours), called populations, against the 

representative background for the designer to either rate or filter based on blending. In 

[14], the interaction proposed is a series of mouse clicks to mark the five (5) most 

conspicuous populations for deletion out of the ten (10) presented. The properties 
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(procedural textures), called genes that make up the marked and the remaining surviving 

populations, are then crossed over and mutated to reproduce new offspring that replace 

lower-fitness individuals. These newly generated populations constitute the new 

evolution. The cycle of interaction and evolution continues until the resulting camouflage 

pattern achieves a certain degree of blending. Typically, in [14], this satisfactory 

concealment was observed after 1000 evolutions, that is, 5,000 mouse clicks. 

Therefore, the following is our new proposed approach that replaces the earlier 

conventional approaches. 

(1) Collecting high-resolution images of representative background 

(2) Algorithmic extraction of low-level features 

(3) Parameterized designing of seamless contours  

(4) Evolutional-based assignment of features to the contours  

(5) Realtime interactive camouflage pattern design testing against the background 

Therefore, this work proposes an assistive mechanism that is GA-based to evolve 

camouflage design colour assignment and proportioning as a designer designs 

interactively. The assistive pipeline's composition starts with features extracted from 

high-resolution images of the desired representative background to blend using the K-

Means algorithm and interactively evolve using a GA parametrised as a procedural 

texturing problem. This work is specifically novel for the end-to-end interactive 

camouflage design, resulting in a seamless design that can be directly printed on fabric.  

This paper is divided into four sections. Section 1 begins with the introduction of the 

motivation behind the research. The research methodology and the materials are 

introduced in Section 2, which briefly describes the data source, the feature extraction, 
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procedural texturing, algorithms and the experimental setup. Section 3 discusses the 

results of the dominant colour extraction with the K-means algorithm, the resulting 

camouflage design from GA, and the designed camouflage's printing. Finally, Section 4 

presents the conclusions and recommends possible directions for future studies. 

 

2. Experimental 

This section details the implementation of the proposed replacement to the earlier 

conventional approaches mentioned. Starting with the collection of representative 

samples from Nigeria’s environment. Then, a machine learning algorithm was used to 

extract five (5) dominating colours from each sample. Afterwards, a detail of the 

procedural synthesis-based camouflage generation was generated with Blender software, 

followed by the torus-based seamlessness and, finally, the GA-based evolution of 

camouflage design colour assignment and proportioning. 

 

2.1. Sample Collection 

We propose collecting high-resolution images rather than earthly samples like tree bark, 

leaves, and soil from the representative areas. This study draws a case study on the 

Nigerian landscape; therefore, the representative areas are the geographical distribution 

of Nigeria. Geographically, Nigeria is in the West Africa region (between latitudes 

4.1027° and 13.7994° N and longitudes 2.7991° and 15.1005° E) with 36 states 

widespread across the six (6) geopolitical zones, namely, North-Central, North-West, 

North-East, South-South, South-West, and South-East. Climatically, she is divided into 

Sahel, Savanna, Tropical Rainforest, and Coastal, starting from the North to the South, as 
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shown in Figure 3.  We collect high-resolution images across the zones mentioned above. 

Specifically, these selected locations are the potential military drill sites across the 

geopolitical zones in Nigeria. For instance, the National Youth Service Corps (NYSC) 

Campsites are military-controlled camps across 36 states. All Nigerian graduates below 

the age of thirty (30) years have been on strategic deployment into any of the states since 

1973 to engage in three (3) weeks of military drill as an avenue to facilitate the 

reconciliation, reconstruction, and rebuilding of the nation after the civil war [20, 21]. 

Some of these high-resolution images are sourced from these campsites and beyond. 

Depending on the region, the images span from tree features like roots, barks, branches, 

and leaves to grasses of varying colours. Figure 4 shows a few samples with 

homogeneous features. 

 

Figure 3: Map of Nigeria's geopolitical and climatic distribution. 
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Figure 4: Samples of sourced high-resolution images that spans from tree features like 

roots, barks, branches, and leaves, to grasses. 

 

2.2. Feature extraction and extraction of dominating colours 

Replacing earthly samples with high-resolution images negates the need for experimental 

laboratory procedures for extracting colour constituents, which was a significant 

overhead due to the need to await the result. However, we extract low-level features from 

each high-resolution image as an alternative. RGB channels were vectorised for each 

image, as illustrated in Figure 5, and clustered into K dominant colours using an 

unsupervised machine learning algorithm called K-Means, as shown in Figure 5. The K-

means algorithm works by grouping similar data points into a K-predetermined number 

of clusters, where each cluster is represented by its centre, called a centroid. In this 

context, given a background image of height (H), width (W) and Channel (C), in this case 

for coloured (Red, Green, and Blue) image C =1, 2 and 3, the resulting vectorised image 

feature per channel is a H*W vector. For example, the input-coloured background image 
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in Figure 5 is 3072 × 4080, and the resulting vector per channel is a [12,533,760 x 3]. The 

K-means problem is to group this feature into K clusters. For instance, to design a 5-

colour military camouflage, the K = 5; therefore, the result is a spectrum of 5 dominant 

colours in terms of the RGB values and frequency of occurrence, as shown in Figures 6 

and 7. 

 

Figure 5. Illustration of the splitting of the RGB and vectorisation of the input 

background image. 
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Figure 6. Clustering the vectorised feature into dominant colours using K-Means (K = 5). 

 

Figure 7. Illustration of spectrum of 5 dominant colours in term of the RGB values and 

frequency of occurrence in the input background image 
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2.3. Generation of camouflage 

Aside from the need to draw camouflage contour, designers also ensure seamlessness. 

Rather than using vector software to achieve this manually, we adopt procedural 

texturing, thus enabling the parametrisation of the camouflage pattern design while 

still giving the human designer flexibility. In this work, parametrisation is achieved 

via tuning the parameters for noise and Voronoi texture nodes that evaluate a fractal 

Perlin and Worley noise, respectively. In this work, we leveraged Blender software's 

flexibility in designing procedural textures visually and programmatically. The 

desired pattern is carefully designed by visually tuning the parameters of the 

abovementioned noise algorithms. At the same time, the colour proportion and order 

of colour assignment are programmatically assigned as the genes of the GA. The 

details of the input-output for both noises are provided in Blender online 

documentation [22]. For example, setting the parameters in Figure 8a and feeding the 

colour – output of the noise texture node into vector – input of the Voronoi texture 

node and then rendering on torus shape results in the colour-segmented seamless 

patterns in Figure 8b. 
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(a) (b) 

Figure 8. Connecting (a) colour – output of noise texture node into vector – input of 

Voronoi texture node to result in (b) colour-segmented patterns. 

 

2.4. Genetic algorithm-based evolution of the camouflage 

Even after the colour-segmented pattern has been carefully designed, the arrangement 

and the proportion of colours in the patterns are crucial. Manually tweaking this 

arrangement and proportion is simpler for a few colour combinations. However, as the 

number increases, the manual adjustment becomes forbiddingly unrealistic, thus 

requiring a more natural and optimal approach. For instance, for a two-colour 

camouflage, the possible ways of arrangement are two factorial (2), and the proportion 

can be varied infinitely in the range of 0 – 1 between the two colours. However, by 

discretising into a step of 0.1, 11 possible complementary values can be assigned between 

the two colours, thus making a maximum of 22 trials. 

Nevertheless, for a typical five-colour camouflage, 120 ways of arrangement exist. A 

maximum of 1200 trials is possible when discretised in a similar version. Of course, 

discretisation is an approximation often accompanied by a problem of loss of details. In 
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this work, the GA is employed to search and optimise the arrangement and proportion of 

each colour for the k-colours camouflage. Although GA can evolve the whole procedural 

texturing, the resulting camouflage pattern evolved in previous work [14] is entirely fitted 

for the given background image. Therefore, we opted to evolve only the texture node for 

colour ordering and proportioning while giving some control to the designer's expertise.  

The GA population is initialised as the proportion of factorial of K number of colours 

clustered by the K-means algorithm from the background image. The GA then uses a 

given fitness function to evaluate each individual in this population. The lower-fitness 

individuals in the population are then replaced by new offspring arising from the 

crossover and mutation of the more viable individuals. This technically implies 

rearrangement and re-proportioning of the colours based on the better ones. Over time, 

the population is expected to contain the populations that improve fitness.  

 

2.5. Interactive Evaluation of the Camouflage 

The role of the fitness function in this work is played by a human observer who visually 

compares the quality of the evolved colour assigned to the camouflage pattern and how 

they best blend with the background. This is achieved via a web-based user interface (UI) 

where the top ten individuals are randomly overlaid on the background image, as shown 

in Figure 11. Immediately, the individuals are drawn, and incremental counting starts for 

each individual. The observer's task is to locate and click the patterns in the order of their 

conspicuousness. Once a particular individual is clicked, its corresponding incremental 

counting stops, thus translating to low fitness for the first clicked individual and highest 

fitness for the last clicked individual. Afterward, the observer clicks the evolve 
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generation button to invoke the GA to use the new fitness to evolve the next individual 

through the earlier-mentioned crossover and mutation. The new top 10 individuals from 

the next generation is then presented to the observer through the UI for evaluation. This 

iterative process continues until a satisfactory blending is achieved. 

 

Figure 9. The interactive user interface for the observer to evaluate the blending of the 

top 10 individuals.  
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2.6. Experimental setup  

This work opted for a 5-colour camouflage pattern design. Therefore, the K = 5 for the K-

Means algorithm. The selected high-resolution background images have varying 

dimensions with homogeneous content. The primary computational resource used for this 

experiment is an Intel(R) Corei7 @ 2.80GHz (RAM 16GB) running Windows 10. We 

utilised open-source software like Blender 3.0 for procedural texturing and Python 3.7 as 

the programming language. The Python-specific library for GA, K-Means, image 

processing, and web backend are the implementations provided by PyGAD [23], scikit-

learn [24], OpenCV [25], and Flask [26], respectively. The parameter for the GA includes 

the fitness function, which is a function that computes the normalisation of the fitness 

provided by the human observer; the number of individuals in a population is set to 120, 

and the number of genes per individual is 5. On average, it took a maximum of 100 

generations to achieve a satisfactory camouflage pattern. 

 

3. Results and Discussion 

This section presents the results of applying the described methods to the Nigerian 

environment. Initially, six high-resolution images were carefully selected, each 

representing a geopolitical zone, sourced from various NYSC camps and military 

barracks across the nation. Using the proposed k-means algorithm, five dominant colours 

were extracted from each image, resulting in 30 colours across all regions. These colours 

and their corresponding Red-Green-Blue (RGB) values and dominance proportions are 

detailed in Table 1. 
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Table 1. The 30 extracted dominant colours. 

S/N Sample Region 

Colour-

Index 

R G B RGB 

% of 

occurrence 

per image 

1 

1 SW 

K = 1 160 173 94   26.69 

2 K = 2 25 28 6   16.30 

3 K = 3 197 208 146   16.59 

4 K = 4 78 87 25   18.42 

5 K = 5 123 136 55   21.99 

6 

2 NE 

K = 1 169 152 144   27.26 

7 K = 2 52 38 31   8.91 

8 K = 3 104 86 77   21.08 

9 K = 4 138 120 111   28.91 

10 K = 5 215 191 173   13.84 

11 

3 NC 

K = 1 208 198 184   14.00 

12 K = 2 153 129 110   31.49 

13 K = 3 120 98 84   20.59 

14 K = 4 179 160 140   27.05 

15 K = 5 67 55 49   6.87 

16 

4 SE 

K = 1 154 167 124   24.01 

17 K = 2 41 45 21   14.55 

18 K = 3 195 201 168   14.20 

19 K = 4 119 133 87   25.21 

20 K = 5 83 94 52   22.03 

21 

5 SS 

K = 1 81 92 21   8.89 

22 K = 2 239 241 236   28.21 

23 K = 3 203 184 140   11.55 

24 K = 4 166 161 79   22.40 

25 K = 5 126 146 43   28.96 

26 6 NW K = 1 192 152 116   53.07 
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27 K = 2 101 82 53   7.68 

28 K = 3 174 182 189   22.97 

29 K = 4 142 119 94   9.39 

30 K = 5 46 39 22   6.89 

 

Analysis of the extracted colours revealed distinct trends among the regions. The South-

West (SW), South-South (SS), and South-East (SE) regions predominantly exhibited 

shades of green, indicative of their coastal and tropical rainforest climates. Conversely, 

the Northeast (NE), North-Central (NC), and North-West (NW) regions were 

characterised by shades of brown, reflective of their desert and savannah landscapes, with 

occasional variations of white likely attributed to skylight dilution. 

The time required for colour extraction varies based on image resolution and 

computational power. Table 2 illustrates the extraction times for images of different 

resolutions across two different PCs. Notably, our proposed approach extracted five 

dominant colours from a 3072 x 4080 RGB image in a maximum of 3 minutes and 16 

seconds, significantly outperforming the 12-hour timeframe required by the colourimeter 

technique [8]. 

 

Table 2. Duration taken to extract 5 colours based on PC configuration and image 

resolution. 

 Image Resolution 

(H x W x RGB) 

Intel(R) Corei7 @ 2.80GHz 

(RAM 16GB) 

Windows 10  

Intel(R) Xeon(R) @ 2.20GHz 

(RAM 12.6GB) 

Ubuntu 22.04.2 LTS 

Sample 1 3072 x 4080 196.87 secs 105.78 secs 

Sample 2 4080 x 3072 152.18 secs 103.22 secs 
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Sample 3 3072 x 4080 196.00 secs 128.85 secs 

Sample 4 4080 x 3072 140.50 secs 105.12 secs 

Sample 5 4080 x 3072  140.60 secs 121.54 secs 

 

Additionally, achieving a satisfactory camouflage design from a background image 

involved a maximum of 100 iterations of GA-based evolution, with up to 5 hours spent 

per design. Figure 10a depicts a background image with dominant colours, while Table 3 

presents the top 10 individuals from the initial generations. After 50 iterations and 

interactive feedback, Figure 10b showcases one of the resulting satisfactory camouflage 

designs, validated through application on a 3D army dress (Figure 11) and subsequent 

heat transfer printing onto fabric (Figures 12a and 12b).  

The fabric printing process utilised EPSON SureColor SC-F540 and JC-7B Semi-

automatic hydraulic double stations heat press machine. Following colour calibration 

with Pantone, the seamless camouflage design was printed onto paper and transferred 

onto the fabric using the heat press machine at 200°C for 60 seconds, resulting in the 

final printed camouflage design on fabric (Figure 12b). 
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(a) (b) 

Figure 10: (a) Input background image and (b) Output camouflage design from 

satisfactory generation 

  

Table 3: Sample of intermediate evolutional generation. 

Generation 0 
(Top 1 -10 individual) 

Generation 1 
(Top 1 -10 individual) 
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Figure 11: Verifying the blending by applying the designed camouflage on a 3D military 

uniform with the source image as the background. 

 

 
 

(a) (b) 

Figure 12. Seamlessly tiled camouflage–like pattern generated 
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4. Conclusions 

This study introduces a Genetic Algorithm (GA)-based approach tailored to support 

camouflage research and development in developing countries, offering a customizable 

alternative to existing patterns. Notably, it addresses the anticipated challenges of climate 

change, which may render current camouflage ineffective. 

This approach accelerates development by utilizing high-resolution image samples from 

diverse environments, procedural texturing, and GA-assisted colour arrangement and 

proportioning. Analysis of six samples from Nigeria's geopolitical regions demonstrates 

promising outcomes, including the correlation between extracted colours and regional 

climatic features, expedited development compared to conventional methods, particularly 

in colour extraction, and the ability to generate GA-based camouflage designs within five 

hours. Moreover, to facilitate accessibility for developing countries, all techniques and 

software utilized are freely available, including the PyGAD library for GA, the scikit-

learn library for K-means clustering, and Blender software for procedural texturing and 

rendering. This study emphasizes the importance of collecting undiluted, homogeneous 

image samples and underscores the necessity for rigorous field testing before deploying 

evolved camouflage designs in combat scenarios. 
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