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n this paper, four indoline-based organic dyes were introduced and studied 

as photosensitizers in the photovoltaic devices. The starting material for 

preparing organic dyes by standard reactions is carbazole and 

phenothiazine. The dyes' status changes are assessed by spectrophotometric 

measurements of the organic photosensitizers in acetonitrile and on a TiO2 and 

rGO/TiO2 substrate. The maximum absorption wavelength for Dyes 1-4 in 

acetonitrile, TiO2  films, and rGO/TiO2 was investigated. Finally, the proposed 

dyes used as a photosensitizer in a dye solar cell structure in the presence of 

rGO/TiO2 and their photovoltaic properties were investigated. Prog. Color 

Colorants Coat. 15 (2022), 123-131© Institute for Color Science and Technology. 

 

 
 

 

  

  

  

  

  

1. Introduction 
Today, energy and the environment are two dimensions 

of the international community. Eco-friendly and 

sustainable energy resources attracted more attention 

due to clean and endless energy [1, 2]. Photovoltaic 

technology (PV) is an optimistic and explored area that 

has exhibited successive year-on-year growth over the 

last decade. The dye-sensitized solar cell is one of the 

critical branches of the emerging third-generation 

photovoltaic technology that has been extended into a 

most inexpensive energy generator and due to the 

development of various efficient components [3, 4]. 

The standard DSSC comprises the dye-sensitized 

semiconductor photoanode, electrolyte, and counter 

electrode [5]. The dye-sensitized semiconductor 

photoanode is used to adsorb dyes, collect and 

transport photo-induced electrons. It acts as a bridge 

that conveys electrons from dyes to external circuits 

and plays a significant role in DSSC [6, 7]. Many 

studies have focused on developing optimal and new 

nano-materials for photoanode preparation. 

Merazga et al. investigated the effect of reduced 

graphene oxide (rGO) on the performance of rGO/TiO2 

composite-based dye-sensitized solar cells (DSSCs) is 

studied. rGO was mixed with TiO2 in an aqueous 

solution at different mass proportions, from 0 to 5 %, 
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to prepare the rGO/TiO2 composite films. The optical 

properties of the rGO/TiO2 films were correlated to the 

photovoltaic characteristics of associated DSSCs. The 

optical band-gap Eg of the rGO/TiO2 film decreases 

linearly, whereas the efficiency of the DSSC increases 

linearly with increasing rGO proportion [8]. Patil et al. 

fabricate a photovoltaic device used organic indoline 

DN350 and reduced graphene oxide (rGO)-TiO2. These 

precursors (materials) were applied as a sensitizer and 

photoanode, respectively. Our photovoltaic results 

revealed that the modified rGO-TiO2 composite NFs 

exhibited higher power conversion efficiency (PCE) 

than the pristine-TiO2 NFs. Our optimized sample 

containing 4 mgrGO-TiO2 NFs showed the best 

performance with 4.43% PCE, higher than the pristine-

TiO2 NFs (3.83 %) [9]. Ding et al. produced reduced 

graphene (rGO)–TiO2 nanocomposite at room 

temperature. Reduced graphene provides a highway for 

electron transportation. The conversion efficiency of a 

30 % increase (to 7.89 %) is obtained compared to that 

of the pure TiO2 photoanode [10]. 

This paper reports on a study that prepares DSSC 

from graphene oxide (rGO)-TiO2 and organic dyes based 

on indoline. They were employed as photoelectrode and 

sensitizers, respectively. The DSSC structure and its 

efficiency have been studied used platinum as a counter 

electrode and iodide-triiodide as the electrolyte. The 

spectrophotometric properties were examined in organic 

dyes included solution and on the photoanode substrate. 

The electrochemical measurement is also analyzed. The 

DFT data were used to determine the highest occupied 

molecular orbital, lowest unoccupied molecular orbital 

levels, and band gaps of these organic dyes. The 

structures of the dye molecule are given in Figure 1. 
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Figure 1: Chemical structure of organic dyes. 

 

2. Experimental 

2.1. Materials and instrumentation  

All compounds used in this study were of analytical 

grade unless otherwise stated. The synthesis route and 

complete characterization of intermediates and organic 

dyes [11] and nanoparticles have been described 

previously [12]. UV-Visible spectrophotometry was 

carried out on Cecil 9200 double beam transmission 

spectrophotometer. Its result is obtained Molar 

extinction coefficients and absorption maxima. 

 

2.2. Dye-sensitized solar cells (DSSCs) 

assembly and photovoltaic characteristics  

A nanocrystalline film was coated on a transparent 

glass support. The dye was adsorbed by dipping the 

coated glass in a 5×10
-5

 M ethanolic solution of the dye 

for 12 hr. The visible bands in the dyes' absorption 

spectrum after adsorption on the nanocrystalline film 

only appeared after the work electrodes were dipped in 

the dye solution for at least 12 hr. Finally, the film was 

washed with an acetonitrile-ethanol 1:1 mixed solution. 

Acetonitrile-ethylene carbonate (v/v=1:4) containing 

tetrabutylammonium iodide (0.5 mol dm
-3

) was used as 

the electrolyte. The dye-adsorbed nanocrystalline 

electrode, the Pt counter electrode, and the electrolyte 

solution were assembled into a sealed sandwich-type 

solar cell [13, 14]. 

An action spectrum was measured under 

monochromatic light with a constant photon number 

(5×10
15

 photon cm
-2

.s
-1

). J-V characteristics were 

measured under illumination with AM 1.5 simulated 

sunlight (100 mW cm
-2

) through a shading mast (5.0 

mm×4 mm) using a Bunko-Keiki CEP-2000 system. 

 

3. Results and Discussion  

Indoline dyes D1-D4 were synthesized, as shown in 

Figure 1. The aldehydes intermediates were prepared 

by a Vilsmeier reaction of N-phenylcarbazole and N-

phenylphenothiazine with phosphoryl chloride (POCl3) 

in DMF and were allowed to react separately with 

malonic acid or cyanoacetic acid in the presence of 

piperidine to give Dye 1 to Dye 4. The final reaction 

for dye preparation was the condensation of the 

respective aldehydes with cyanoacetic acid (or malonic 

acid). It undertook the Knoevenagel reaction in the 

presence of piperidine. The phenothiazine itself is bent 

along the N-S axis. As confirmed by X-ray structure 
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analysis, the nitrogen atom in phenothiazine moiety 

induces a nonplanar geometry similar to the SP
3
 

hybridized, pyramidal nitrogen [15]. 

Conversion efficiency depends mainly on 

sensitizers, so the recent development in this respect 

has led to dyes that absorb across the visible spectrum 

leading to higher efficiencies. The wavelength of 

maximum absorption (λmax) and the molar extinction 

coefficients (εmax) for the eight dyes in CH3CN are 

listed in Table 1, together with λmax of the 

corresponding dyes adsorbed on a nanostructure film. 

The absorption peaks for synthesized dyes can be 

assigned to an intramolecular charge transfer between 

the heterocycle-based donor and the acrylic or 

cynoacrylic acid, providing an efficient charge-

separation in the excited state [5, 16]. Under similar 

conditions, Dyes 3 and 4 show a bathochromic shift in 

the absorption peak, which can be attributed to the 

extra electron-donating effect of the sulfur atom in 

these dyes. Such bathochromic shifts in the adsorption 

spectra imply lower energy absorption. For the 

cyanoacrylic acid based dyes, when an electron 

acceptor (-CN) was linked to the vinyl bridge, the λmax 

has a bathochromic shift. This shift of the maximum 

absorption peak arises from the fact that one more 

electron acceptor (-CN) enhances the electron-

withdrawing ability of electron acceptors and lowers 

the lower unoccupied molecular orbital (LUMO).  

Therefore, these changes has reduced the gap between 

higher unoccupied molecular orbital (HOMO) and 

LUMO states [17]. Upon dye adsorption onto a TiO2 

and rGO/TiO2 composite surface, the wavelength of 

maximum absorption is bathochromically shifted 

synthesized dyes as compared to the corresponding 

spectra in solution, implying that dyes adsorbed on to 

photoanode surface contain partial J-type aggregates 

[18,19]. The molar extinction coefficients of 

synthesized dyes in CH3CN at their respective λmax are 

also shown in Table 1, indicating that these novel dyes 

have good light-harvesting abilities. 

Optical absorption spectra of rGO-TiO2 

nanocomposite were carried out to calculate the band-

gap energy. When rGO is incorporated with TiO2, 

improved absorption occurs in the region of 200-380 

nm, which is due to the π-π* transition. This absorption 

band has resulted from the electronic transition from 

O2p antibonding orbital to Ti3d bonding orbital. The 

band-gap energy of rGO-TiO2 nanocomposite is 

determined to be 3.1 eV from the linear fit of the Tauc 

plot, which confirms the redshift in the absorption 

spectrum. The absorption shift towards the visible 

region is due to the incorporation of rGO in TiO2 

nanocomposite, which can be used in photovoltaic 

applications to harvest visible light photons [20, 21]. 

Density functional theory (DFT) calculations were 

performed at the B3LYP/6-31G level to investigate 

dyes in the mood of ground statesatmolecular levels 

[7]. Optimized structures, distributions of highest 

occupied molecular orbitals (HOMO), and lowest 

unoccupied molecular orbitals (LUMO) are charted 

with the respective molecular orbital amplitude in 

Figure 2. According to the theoretical calculation, the 

HOMO values are calculated of 5.68, 5.96, 5.32 and 

5.58 eV for dyes 1, 2, 3, and 4, respectively. They are 

in the well reflecting the donor moieties' electron-

donating strength and the LUMO values of dyes. The 

LUMO values are registered of 1.86, 2.53, 1.97, and 

2.65 eV for dyes 1, 2, 3, and 4 tandemly (Table 2). A 

slight anomaly of different values of HOMO-LUMO of 

dyes is related to the part of molecules also covering 

the cyano group fragment. 

 

Table 1: Absorption properties of synthesized dyes. 

Dye λmax (nm)a εmax (M
-1cm-1) λmax (nm)b λmax (nm)c 

1 386 23898 406 405 

2 395 22645 419.5 414 

3 404 18746 422 419 

4 417 19430 436 428 

                            a) in solution (CH3CN); b) on TiO2 and c) on rGO/TiO2 
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Table 2: Values of HOMO-LUMO and calculated transition energies for the first spin allowed, spin forbidden transition 

and compositions of major electronic transitions of Dyes.  

Dye 
HOMO, 

eV 

LUMO, 

eV 
Transition 

Energy, 

eV 
Main transition (%) 

1 5.68 1.86 

S0→S1 3.51 H→L (4.35%); H+1→L (92.47%) 

S0→S2 3.79 H→L (60.98%); H+1→L+1 (34.32%) 

S0→S3 4.12 H-2→L (95.04%) 

2 5.96 2.53 

S0→S1 3.09 H→L (9.46%); H+1→L (89.02%) 

S0→S2 3.42 H→L (83.65%); H+1→L+1 (5.51%) 

S0→S3 4.01 H-4→L (2.40%); H-3→L (90.74) 

3 5.32 1.97 

S0→S1 2.94 H→L (2.12%); H+1→L (95.27%) 

S0→S2 3.72 H→L (9.92%); H+1→L+1 (86.34%) 

S0→S3 3.89 H→L (22.41%); H+1→L+2 (65.46%) 

4 5.58 2.65 

S0→S1 2.58 H→L (2.89%); H+1→L (95.85%) 

S0→S2 3.54 H→L (86.86%); H+1→L+1 (6.15%) 

S0→S3 3.86 H→L (5.54%); H+1→L+1 (89.40%) 
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Figure 2: Optimized structure at ground state (S0) and distributions of Molecular orbitals HOMO and LUMO of dyes 1-4 

calculated at package level of B3LYP/6-31G.  
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On the other hand, in a comparison of molecular 

structures, the HOMO-LUMO values of dyes 2 and 4 

were in the high range, and it is attributed to the 

HOMO of carbazol that it is a π-type orbital whereas 

its LUMO is a π∗ orbital localized on cyano group. 

Hence, the lowest electronically excited state is 

expected to have intermolecular charge transfer (ICT) 

character. The absorption bands correspond to the 

HOMO→LUMO transitions for all dyes are presented 

in Figure 3. The theoretical transition maximum 

wavelength values were from 350 to 420 nm, and this 

range was in good agreement with experimental UV-

Vis spectra of dyes (Table 1). According to Table 2, it 

is noted that the different values of energy levels didn't 

achieve up to 1 eV, relatively the minor energy 

splitting between H→L and H ± n →L ± n (< 1 eV, n is 

an integer) with different d orbital character. This event 

will be significantly caused to enhance the transitions 

[22, 23]. 

Dye-sensitized solar cells (DSSCs) were 

constructed and compared to clarify the relationships 

between organic dye molecules' sensitizing behavior 

and rGO/TiO2 thin films. The DSSCs utilized this dye 

as a sensitizer for nanocrystalline anatase TiO2 and 

rGO/TiO2. Figure 4 shows a typical photocurrent–

photovoltage (J–V) curve for cells-based organic dye. 

The detailed photovoltaic parameters are also 

summarized in Table 3. The solar energy to electricity 

conversion efficiency (η) of the DSSCs is calculated 

from short circuit current (Jsc), the open-circuit 

photovoltage (Voc), the fill factor (FF), and the 

intensity of the incident light (Pin) [13, 24, 25]. 

 

 

 

Table 3: Photovoltaic performance of DSSCs based on organic dyes. 

DSSCs based on TiO2 [12] 

Dye VOC (V) JSC (mA.cm-2) FF η (%) 

1 0.56 8.29 0.64 2.98 

2 0.63 9.44 0.62 3.69 

3 0.63 10.63 0.64 4.31 

4 0.69 12.67 0.67 5.87 

DSSCs based on rGO/TiO2 

Dye VOC (V) JSC (mA.cm-2) FF η (%) 

1 0.63 8.31 0.65 3.40 

2 0.69 9.60 0.64 4.23 

3 0.68 10.77 0.64 4.68 

4 0.71 12.94 0.66 6.06 
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Figure 3:Theoretically predicted UV-Vis spectra of dyes 1-4 of the singlet transitions (according to the basic set of: TD-

DFT B3LYP/6-31G).  

 

Figure 4: Current density-voltage characteristics for a) TiO2 and b) rGO/TiO2. 

 

According to the results shown in Table 3, under 

the standard global AM 1.5 solar condition, the 

conversion efficiencies of solar cells containing organic 

(Dye 1-4) based on TiO2 are 2.98, 3.69, 4.31, and 5.87 

percent, respectively. The efficiencies of solar cells 

containing organic (Dye 1-4) based on rGO/TiO2 are 

3.40, 4.23, 4.68, and 6.06 percent, respectively. The 

device's conversion efficiency is probably due to the 

more vital electron withdrawal ability of the 

combination of cyanine acceptor groups [26]. The 

conversion efficiency of solar energy to electricity of 

the present organic dyes could be improved by 

extending the organic dyes' conjugated length or by 

incorporating a thiophene π-bridge [27, 28].  

rGO is a carbon allotrope with a 2D honeycomb 

network of sp
2
 hybridized carbon atoms. It has to attract 

application in DSSC because it possesses high electron 

mobility (2×10
5
 cm

2
.V

−1
.s

−1
), high transmittance 

(97.7%), and a large surface area (2630 m
2
 g

−1
). 

Incorporation of rGO in TiO2 can form a heterojunction 

at its interface and induce a small internal electric field 

that separates the electron-hole pairs from the charge 
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recombination [29, 30]. It has been reported that rGO-

TiO2 nanocomposite (functionalized anatase TiO2 

reduced graphene oxide) gives better electron mobility 

(53,000 cm
2
.V

−1
.s

−1
) and enormous surface area  

(200 m
2
 g

−1
). This leads to the improved electron-

transport property and dye adsorption, respectively. 

However, incorporating a high volume fraction of rGO 

is not a preferred choice for photoanode application due 

to its reduced dye anchoring. Because the high 

withdrawing ability of –COOH moiety of dye sensitizers 

can anchor efficiently on TiO2 surface rather than rGO 

sheets [31]. Junling Song et al. reported that, the 

introduction of the rGO layer between TiO2 and dye 

could boost the electron transportation by the formation 

of rGO–TiO2 Schottky junction, which enhances the 

power conversion efficiency up to 6.06 % compared 

with pristine TiO2 based device (5.09 %) [32]. 

According to the above results, graphene has 

caused significant improvement in our fabricated 

Schottky barrier diode's various parameters. Graphene 

has an electron mobility of 10
4
 cm

2
.V

-1
.s

-1
 at room 

temperature. So, it is expected to enhance the electron 

transfer and EHP separation of the composite. This 

impact of graphene is verified, and get a better insight 

into the carrier transport mechanism, the I–V curves 

were further analyzed by evaluating mobility, lifetime, 

and diffusion length of the carriers. Standard SCLC 

theory was employed for this purpose. Charge carriers 

in the graphene composite-based diode had reasonably 

greater diffusion length than those in the other device, 

more than 30 % under photo condition. As a result, 

more charge carriers were generated upon light 

soaking, thus increasing the photocurrent significantly. 

In our graphene–TiO2 composite, graphene acts more 

like many extended current collectors penetrating the 

TiO2 matrix. Electrons can travel a longer distance and 

finally get collected by an external circuit [33, 34]. 

 

4. Conclusions 

Four organic dyes with D-π-A structure (phenyl as 

donor and acrylic and cyanoacrylic acid as acceptor 

group) were assembled as photosensitizers in dye-

sensitized solar cell devices. rGO/TiO2 was selected as 

nanostructure for the preparation of photoanode of dye-

sensitized solar cells. The organic dyes' 

spectrophotometric properties included solvent, and 

TiO2 and rGO/TiO2 films were investigated. The 

absorption maxima of synthesized dyes applied on the 

rGO/TiO2 film's surface gave a bathochromic effect 

compared to the corresponding dye spectra in solution. 

The wavelength of maximum absorption for Dyes 1-4 

in acetonitrile are 386, 395, 404, and 417 nm and, on 

TiO2 films are 406, 419.5, 422, and 436 nm, and, on 

rGO/TiO2 405, 414, 419, and 428 nm, respectively. 

Finally, the organic dyes were utilized in constructed 

DSSCs, and their photovoltaic behaviors were 

assessed. Solar energy to the electricity conversion 

efficiency of 2.98, 3.69, 4.31, and 5.87 percent was 

achieved for synthesized dye 1-4 in DSSCs based on 

TiO2, respectively. Solar energy to the electricity 

conversion efficiency of 3.40, 4.23, 4.68, and 6.06 

percent was achieved for synthesized dye 1-4 in 

DSSCs based on rGO/TiO2. The results show that the 

overall conversion efficiencies of DSSCs sensitized by 

all dyes in the presence of rGO/TiO2 are higher than 

DSSCs based on TiO2 nanoparticles. 
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