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he non-context-based approach is used for the synthesis of spectral 

reflectance curves of objects with known CIEXYZ tristimulus values. 

The method introduces two sets of features, i.e., the standard color-

matching functions normalised by their sum in each wavelength and a group of 

two sigmoidal and one Gaussian bases that approximately fit the first set. The 

assigned spectra for the desired tristimulus colorimetric values are calculated 

using an additive color-mixing approach. Results of different methodologies are 

numerically compared in terms of root mean squared error (RMSE), goodness fit 

coefficient (GFC), and CIELAB color difference values between the actual and 

synthesised spectra. It is found that the synthesised spectra by the suggested 

primaries better resemble the actual behaviours of spectral reflectances of 

natural and synthetic objects in comparison to using three Gaussian primaries. 

Compared to other context and non-context-based approaches to spectral 

reconstruction, the suggested method is faster and does not require iterative 

optimisation. Prog. Color Colorants Coat. 17 (2024), 53-60© Institute for Color 

Science and Technology. 
 
 

 

 

 

 

 

 

1. Introduction 

In the visible spectrum, the reflection spectra of objects 

are known as inherent optical properties of materials 

and have very important applications, such as object 

identification and color-matching trails. Today, various 

easily accessible devices with three filters, like 

colorimeters and CCD digital cameras, have become 

popular, while measuring objects' reflectance spectra 

still requires more professional equipment like 

spectrophotometers. Hence, the estimation of the 

spectral reflectances of objects from the reduced 

spectral data, such as tristimulus color values, is of 

great attraction. This subject has been the object of 

many scientific studies over the decades, and numerous 

methods have been developed to accomplish this goal 

[1-8]. Efforts could be categorised into two groups, i.e., 

context-based approach and fixed non-context 

dependent primaries.  

Although the methods based on the principal 

component analysis would probably be the most 

interesting context-based approach, other methods, such 

as nonnegative matrix factorisation, are also introduced 

in this category [9-11]. In a study by Rezaei and her 

coworkers, a comparison was conducted between two 

kernel-based approaches, namely support vector 

regression and kernel ridge regression, alongside PCA. 

The primary objective was to evaluate and compare the 

efficacy of these methods in reconstructing the 

reflectance spectra of colored surfaces based on their 

corresponding CIE XYZ tristimulus values [12]. On the 

other side, when the prefixed primaries are used, the 

Hawkyard iterative methodology [2, 3] and Sun et al. 
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and Berns' Gaussian primaries
 
[4,8] would be the most 

successful approaches.  

Color is usually characterised by tristimulus values 

in well-defined spaces, such as CIEXYZ or RGB color 

systems. This type of object characterisation depends 

on the effects of other parameters generally, the 

relative spectral power distribution of the employed 

light source and the color matching functions of the 

standard observer or spectral sensitivities of the 

camera's RGB channels. The integration of the 

multiplication of these variables over the visible 

wavelength provides the color of objects that could be 

identical to the objects with different spectral 

behaviours, the phenomenon known as metamerism. 

Mathematically, the reverse calculation and estimation 

of reflectance spectra of objects from their tristimulus 

values are not as easy as a direct approach if additional 

information is unavailable. In fact, from the 

mathematical point of view, the estimation of spectral 

reflectances of objects from their tristimulus values is 

typically regarded as a one-to-many problem. The 

problem is similar to estimating the lengths of a 

rectangle from its perimeter and means that many 

rectangles with different side lengths could have the 

same perimeter. Therefore, accurately estimating the 

reflectance spectra from the colorimetric values is still 

an open and attractive research topic, and solving this 

inverse problem requires sophisticated optimisation 

algorithms. However, various methods with different 

degrees of success, complexity and accuracy have been 

developed for this purpose. Some inherent spectral 

properties of natural and synthetic materials, such as 

the smoothness of the reflectance spectra of objects 

over the visible band, provide some constraints that 

help to solve the problem more efficiently [1, 2].  

As mentioned earlier, the principal component 

analysis method [5, 13] is the most common solution 

for this underdetermined mathematical problem. This 

method extracts the features of the entire spectral 

dataset and uses them as statistical primaries for further 

reflectance reconstruction. The success of the proposed 

method and those commonly used by other context-

based systems fully depends on the selected dataset and 

the similarity between the context set and the target.  

In the non-context approach to spectral 

reconstruction, based on the general behaviour of 

spectral reflectances of objects, it is tried to find a 

limited set of primaries, i.e., three, that provides the best 

spectral match for the samples with known tristimulus 

values. To this end, depending on the types of color 

mixing systems, different bases have been suggested and 

used as subtractive or additive primaries. While 

Hawkyard did not name the employed primaries as red, 

green and blue lights, the method was based on 

optimising the amount of them through an iterative 

methodology [2, 3]. Wang and his colleagues [14] 

mathematically analysed the convergence of the 

Hawkyard method and suggested a minor modification 

to ensure improvement in the iterative scheme. They 

investigated the iterative improvement sequence as a 

core principle of the Hawkyard method and discussed in 

detail the convergence property of the algorithm. Later, 

Berns [15] criticised the Hawkyard approach and 

assigned synthetic reflectances to objects with known 

tristimulus values by calculating the amounts of three 

red, green and blue Gaussian primaries through an 

additive color mixing approach that provides a well-

defined system of equations without any necessity to 

refine the results through an iterative improvement 

procedure. Based on Berns' algorithm, Sun and his 

coworkers [4] and Attarchi and Amirshahi [6] 

introduced Gaussian primaries with adaptable half width 

at maximum values and a sigmoidal red to improve the 

quality of synthesised spectral reflectances.  

This research tries to find more efficient non-

context primaries to estimate the reflectance spectra of 

objects from their corresponding colorimetric data by 

taking advantage of former methods. Like most 

previous research, the number of primaries was 

restricted to three. Consequently, 3 non-context-based 

primaries were created based on the normalised 

standard color matching functions. Then, the weights 

of the primaries were calculated through an additive 

color matching approach, and the weighted sum of 

spectral behaviours of primaries was considered as the 

synthesised reflectance curve for the proposed 

colorimetric tristimulus values. Since the spectral 

patterns of proposed primaries somehow resembled the 

sigmoidal and Gaussian shapes, they are introduced as 

pseudo-sigmoidal and pseudo-Gaussian functions of 

wavelength. Finally, two sigmoidal and one Gaussian 

curves were fitted to the previous set of primaries and 

used as a new set for spectral reconstruction purposes. 

Results obtained from these approaches are compared 

to those obtained by the classical non-context methods 

that were introduced previously [2, 3, 8, 15].
 

Hawkyard [2, 3] developed an algorithm that 

assigns a synthetic reflectance curve for each set of 
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CIEXYZ tristimulus values. The method optimises the 

amount of three selected primaries through an iterative 

color-matching procedure and provides artificial 

reflectance spectra for a proposed object with known 

colorimetric specifications. The approach is a non-

context-based model and uses a set of prefixed 

primaries.  

The method was based on three practical criteria, 

i.e., the reflectance spectra are a smooth function of 

wavelength, the spectral power distributions (SPD) of a 

CRT color are also smooth if it is normalised by the 

SPD of the CRT peaks for white, and the CIEXYZ 

color space is inherently an additive color medium. 

Based on these annotations, Hawkyard suggested the 

following equation to estimate the spectral reflectances 

of objects from the corresponding XYZ colorimetric 

values (Eq. 1). 
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Where, PR, PG and PB are the spectral power 

distribution functions of primaries in the visible 

spectrum's red, green, and blue regions. These 

primaries were supposed to be the spectral color-

matching functions of standard observers normalised 

by the sum of them. Accordingly XW, YW and ZW are 

the tristimulus value of the employed illuminant, and as 

Equation 1 shows, the SPD of the employed light 

source appears in the denominator of this equation. He 

estimated primaries' weights (amounts) and improved 

them through an iterative procedure to match the 

sample colorimetrically, and used them to synthesise 

the proposed object's spectral reflectance. 

Soon after Hawkyard's article [2] was published, 

Berns criticised the proposed iterative method and 

suggested a set of Gaussian primaries to assign a 

synthetic reflectance to a set of XYZ tristimulus values. 

As Eq. 2 shows, the method simply calculates the 

amount of each primary based on an additive color 

mixing system.  
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 show the corresponding CIEXYZ tristimulus values 

of primaries and desired sample, finally, the assigned 

spectral reflectance, i.e.  
mix

R  , could be simply 

calculated by Eq. 3. 
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Where  
i

max
R  show the spectral behaviours of 

employed Gaussian primaries. Although the Berns 

method does not require an iterative improvement loop 

and seems very simple compared to the Hawkyard 

approach, the synthesised reflectances by the latter 

method are smoother and provide a better 

approximation for the actual reflectance spectra. 

In the present paper, by considering the points used 

in the Hawkyard primaries and integrating them with 

the Berns additive mixing methodology, it has been 

tried to eliminate the iteration step in the Hawkyard 

approach. In addition, other sets of non-context 

primaries, including two sigmoidal and one Gaussian 

function, are introduced and employed for spectral 

estimation from colorimetric values. 

 

2. Experimental  

2.1. Gaussian (bell-shaped) functions 

Gaussian functions are one of the most important 

mathematical functions, especially in statistics and 

modelling issues. They are commonly used in scientific 

and engineering applications and can model many 

physical phenomena. Gaussian functions are 

exponential functions used to express a wide range of 

features. The general form of Gaussian functions is 

shown in Eq. 4: 

2

2

(x b)
f (x) a exp

2c

 
   

 
   (4) 

 

Values a and b are real numbers, and c is a non-zero 

integer. 

 

2.2. Probability density functions (PDFs) 

In probability and statistics theory, the Gaussian 

function is represented as a probability density function 

for normal distribution (called PDF) and is shown by 

Equation 5 [17]. 
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Where,   and   show the mean and the 

variance of the Gaussian PDF, respectively.  

 

2.3. Cumulative distribution functions (CDFs) 

For a real-valued random variable X, X's cumulative 

distribution function (CDF) is the probability that X 

yields a value less than or equal to x. For continuous 

random variables, CDF can be defined as Eq. 6. 

Assume that f is the probability density function of X, 

then the cumulative distribution functions F for normal 

distribution could be shown by: 
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           (6) 

 

As Equation 6 shows, the CDF function is 

calculated from the integral of the PDF function. 

Conversely, a Gaussian function is obtained by a 

derivative of a sigmoid function. According to Figure 

1, the CDF function is a representation of a sigmoid 

function, and the PDF function is a representation of a 

Gaussian function. 

 

2.4. Sigmoid functions 

The sigmoid or S-shaped function (the standard logistic 

function) is introduced as non-linear transfer functions 

at different physical, biological and evolutionary levels 

[16]. The mathematical form of the sigmoid function is 

shown in Eq. 7. 
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By adding constants 
1C  and 

2C  to the common 

form, the equation can be shown as (Eq. 8): 
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As shown in the next section, it is notable that the 

first derivative of a sigmoid function is a bell-shaped 

function. Conversely, the integral of any bell-shaped 

function, as long as they are continuous and 

nonnegative, also results in a sigmoid function. 

The data studied in this work was the reflectance 

spectra of 1269 Munsell matte chips [18]. The 

reflectance spectra were fixed within the 400 to 700 nm 

range at 10 nm intervals. The CIEXYZ tristimulus 

values of samples were calculated under D65 standard 

illuminant and 1964 standard observer and used as 

observations in the synthesised spectral reflectance 

assignment. Eq. 9 shows that the first set of primaries 

was the CIE 10-degree standard observer color 

matching functions normalised by their sum.  
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Where,  
R

R  ,  
G

R   and  
B

R   refer to the 

reflectance spectra of primaries x
, y

 and z  

show the color matching functions of 1964 standard 

observer.  

 
Figure 1: PDF and CDF functions. 
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The functions were normalised to their maximum to 

fix them between 0 to 1 and used as non-context 

primaries to assign a spectral reflectance to each 

colorimetric value. Figure 2 shows the spectral 

behaviours of extracted bases that resemble a pseudo-

Gaussian curve for the green region of the visible 

spectrum and two pseudo-sigmoidal curves for the blue 

and red regions. 

The desired primaries were then used to match the 

CIEXYZ values of samples colorimetrically, and the 

value of each primary was calculated and used, as 

shown in Eq. 10, to synthesise the proposed spectral 

reflectances. 
 

       
mix R G B

1 2 3R c R c R c R        (10) 

 

The other set of primaries, including two classical 

sigmoidal and classical Gaussian curves, were those 

that fitted the first set, i.e., pseudo-Gaussian and 

pseudo-sigmoidal data, and were similarly used in 

synthetic reflectance effort. The new set is shown by 

Eq. 11, where RR
 and BR

 are sigmoidal red and blue 

and GR
 demonstrates the Gaussian green primaries. 

Figure 3 shows the spectral behaviours of designed 

primaries.  
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The reconstruction procedures were performed 

using classical Gaussian and the following primaries:  

 One pseudo-Gaussian and two pseudo-sigmoidal 

functions  of wavelength are shown by Eq. 9, and 

 One Gaussian and two sigmoidal functions of 

wavelength are demonstrated by Eq. 11. 

 

 

Figure 2: The extracted primaries from normalized CIE 10-degree standard color matching functions. 

 
Figure 3: Classical sigmoidal and Gaussian curves are shown by broken line and the pseudo sigmoidal and Gaussian 

curves are demonstrated by solid line. 
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Results obtained from each method were spectrally 

and colorimetrically compared to actual reflectances. 

The root mean square (RMS) error between the actual 

and synthesised reflectances and the goodness fit 

coefficient (GFC), the cosine of the angle between the 

actual and created spectra, were calculated. Since the 

known values were the tristimulus values of samples 

under D65 illuminant and 1664 standard observer, in 

color domain, the CIELAB color differences under A 

and F11 light sources and 1964 standard observer were 

the measures that were used to evaluate the performance 

of each set of primaries. 

 

3. Result and Discussions 
Table 1 shows the results of the reconstruction of the 

reflectance spectra of Munsell samples with different 

methodologies in terms of RMS and GFC, as well as 

*

abE color difference values under A and F11 

illuminants and 1964 standard observer. 

As Table 1 shows, Berns' Gaussian method provides 

the worst results among the employed models. On the 

other hand, Hawkyard, pseud Gaussian-sigmoid and 

classical Gaussian-sigmoid methods yield approximately 

identical performances. The results of the suggested 

methods, i.e., the pseud Gaussian-sigmoidal and the 

Hawkyard method, are precisely the same, while the 

classical Gaussian-sigmoidal are very close to them. 

Derivation of the same results for both pseudo and 

classical Gaussian-sigmoidal primaries and the 

Hawkyard method shows the possibility that the iterative 

calculation could be avoided without inquiring a cost in 

accuracy. Notably, the iterative loops can lead to a 

significant computing time in more complicated 

samples, such as the extraction of spectra of images. 

However, based on the additive color mixing law, the 

improvement caused by each iteration does not 

necessarily, and our experience showed that, in this case, 

the computing time for 1269 Munsell samples decreases 

from 1.88553 seconds to 0.0004 seconds if a computer 

with the Intel Core i7-8550U with 1.80 GHz frequency 

and 8 GB of ram is used. Again, it is emphasised that the 

negligible computing time is due to the nature of 

employed samples that were Munsell specimens in 10 

nm spectral intervals.  

To compare the results of different methods, the 

reflectance spectra of 18 randomly selected samples of 

the Munsell set are shown in Figure 4, along with the 

spectra that are assigned by employed methodologies.  

As the plots of Figure 4 show, the differences 

between the actual and the synthesised spectra obtained 

from Gaussian primaries are evident. The subject is 

more apparent in the long wavelength region of the 

visible spectrum [8]. The problem originates from the 

inherent characteristic of the red Gaussian primary that 

is in descending manner after its maximum at 610 nm. 

That contradicts the inherent spectral characteristic of 

most natural and synthetic objects that show ascending 

reflectance behaviour in this particular visible spectrum 

region. In addition to this apparent paradox, the normal 

behaviours of employed Gaussian primaries with three 

distinguished peaks concentrated at 440, 540, and 603 

nm provided a type of sawtooth effect that is not 

evident in the reflectance spectra of real objects.  

Results from suggested sets of primaries are almost 

identical and are smoother than those obtained by the 

Berns method. This means that the proposed primaries 

can assign the reflectance spectra to a set of colorimetric 

data through a non-iterative approach. 

 

Table 1: The RMS, GFC and color difference values under A and F11 illuminants and 1964 standard observer between 

the actual and reconstructed spectra with different methods for 1269 Munsell samples . 

Method 
RMS GFC 

*

abE  

A F11 

mean max Std mean min Std mean max Std mean max Std 

Gaussina 0.08 0.24 0.05 0.96 0.58 0.03 2.57 13.08 2.07 2.14 13.00 2.11 

Hawkyard 0.03 0.19 0.03 0.99 0.71 0.01 1.72 13.10 2.00 2.61 14.87 2.63 

Pseud Gaussian Sigmoidal 0.03 0.19 0.03 0.99 0.71 0.01 1.72 13.10 2.00 2.61 14.87 2.63 

Classical Gaussian Sigmoidal 0.04 0.19 0.03 0.98 0.72 0.01 1.95 11.25 1.80 2.28 15.29 2.29 
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Figure 4: The Actual and synthesized spectra with different methods for 18 randomly selected samples. 
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4. Conclusion 

Using additive colour mixing model, two sets of non-

context-based primaries were introduced to assign 

synthetic reflectances to corresponding colorimetric 

tristimulus values. The performances of the extracted 

primaries in spectral reconstruction were compared to 

some other non-contest-based sets of spectra suggested 

previously. The employed bases were a set of one 

Gaussian and two sigmoidal functions of wavelength. 

The synthesising process was a fast non-iterative 

approach based on additive color mixing principles. 

Results showed that the assigned spectral reflectances 

are smoother than those obtained by the Gaussian 

method and yield almost identical results to the 

Hawkyard approach. In contrast, the suggested method 

does not require iteration to recalculate reflectance 

spectra. 
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