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orrosion, the relentless foe plaguing industries exposed to hydrochloric acid 

solutions, threatens material integrity and equipment longevity. To triumph over 

this formidable adversary, the development of effective corrosion inhibitors is 

paramount. In this groundbreaking research, we delve into the untapped potential of 4-

Acetamidoantipyrine as a corrosion inhibitor for safeguarding mild steel in hydrochloric 

acid solutions. Through rigorous experimentation, employing weight loss measurements, 

adsorption studies, and state-of-the-art computational analysis, we unlock the secrets of 

this remarkable inhibitor's inhibitory mechanisms. The results astoundingly reveal a 

pronounced decline in the corrosion rate of mild steel as the concentration of 4-

acetamidoantipyrine intensifies. At an impressive concentration of 500 ppm, the inhibitor 

unleashes its full might, exhibiting an awe-inspiring maximum inhibition efficiency of 91.1 

%. Further investigation uncovers the formation of a robust monolayer on the surface of 

mild steel, meticulously adhering to the revered Langmuir adsorption isotherm. 

Illuminating the binding mechanism, computational analysis highlights the intricate 

interaction between the inhibitor's nitrogen and oxygen atoms from the pyrazole and 

amide groups with the metal surface. These revelatory findings underscore the immense 

potential of 4-Acetamidoantipyrine as an unparalleled corrosion inhibitor, championing 

the protection of mild steel in the most aggressive hydrochloric acid environments. 

Moreover, they provide invaluable insights into the enigmatic inhibitory mechanisms 

employed by this remarkable compound. By shedding light on the captivating interactions 

and absorption behavior of 4-acetamidoantipyrine, this seminal study pioneers the 

advancement of corrosion inhibitors, paving the way for continued exploration and 

transformative breakthroughs in this captivating field. Prog. Color Colorants Coat. 17 

(2024), 85-96© Institute for Color Science and Technology. 
 

 

 

 

 

 

 

1. Introduction 

Mild steel is widely utilized in various industries, 

including construction, food processing, and 

transportation, owing to its advantageous properties such 

as mechanical strength, ductility, ease of production, and 

cost-effectiveness [1, 2]. However, the susceptibility of 

C 
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mild steel to corrosion poses a significant challenge, 

leading to surface cracking, financial losses, and safety 

hazards [1, 2]. Hence, it is imperative to prevent 

corrosion and protect the integrity of mild steel. In recent 

years, multiple anti-corrosion strategies have been 

developed, encompassing corrosion inhibitors, coating 

isolation, alloying, and metal surface modification. 

Among these approaches, the utilization of corrosion 

inhibitors has emerged as a cost-effective and 

straightforward method [2, 3]. Corrosion inhibitors are 

chemical compounds that form a protective layer on the 

metal surface, impeding corrosion while preserving the 

material's original properties. The addition of a small 

quantity of corrosion inhibitor can significantly reduce 

the corrosion rate of mild steel under diverse 

environmental conditions [4, 5]. Extensive research has 

been conducted on corrosion inhibitors in various 

industries to effectively reduce the corrosion rate of 

metal surfaces exposed to aggressive environments. 

Hydrochloric acid and other acidic solutions find wide 

application in industrial processes such as acid pickling, 

industrial cleaning, acid rescaling, oil-well acidification, 

and petrochemical operations. Inhibitors are commonly 

employed in acidic solutions to prevent metal dissolution 

and acid consumption, establishing them as practical 

means of corrosion protection [6, 7]. Organic inhibitors 

have demonstrated their effectiveness in mitigating 

corrosion, and numerous scientific studies have 

investigated the use of corrosion inhibitors for mild steel 

in acidic media. In general, inhibitors containing 

heteroatoms exhibit varying degrees of effectiveness, 

with the order of preference being oxygen (O) < nitrogen 

(N) < sulfur (S) < phosphorus (P) [8-15]. Organic 

molecules can alter the electrochemical behavior of 

acidic media, thereby reducing their aggressiveness [16-

18]. Antipyrine derivatives, which contain oxygen and 

nitrogen heteroatoms, are frequently employed as 

corrosion inhibitors. Among them, a specific derivative, 

namely 4-acetamidoantipyrine (Figure 1), has been 

investigated as a potential corrosion inhibitor for mild 

steel in acidic environments. The multifunctional 

protective properties of this inhibitor position it as a 

promising novel corrosion inhibitor. The inhibition 

efficiency of 4-acetamidoantipyrine was evaluated using 

weight loss techniques, and the experimental results 

were further correlated with quantum chemical 

calculations employing density functional theory (DFT) 

to elucidate the coordination between the inhibitor and 

the mild-steel surface. Corrosion poses a significant 

challenge in industries that are exposed to hydrochloric 

acid solutions, as it threatens the integrity and longevity 

of materials and equipment. The aggressive nature of 

hydrochloric acid environments necessitates the 

development of effective corrosion inhibitors to mitigate 

the destructive effects. However, identifying suitable 

corrosion inhibitors that can effectively protect mild 

steel in such harsh conditions remains a pressing 

problem. This problem statement underscores the need 

for novel and efficient corrosion inhibitors that can 

preserve mild steel in hydrochloric acid environments, 

prompting the exploration of the untapped potential of 4-

Acetamidoantipyrine as a promising solution. The aim 

of this research is to explore and unlock the potential of 

4-acetamidoantipyrine as a corrosion inhibitor for 

preserving mild steel in harsh hydrochloric acid 

environments. The study aims to investigate the 

inhibitory properties and mechanisms of 4-

Acetamidoantipyrine through experimental approaches, 

including weight loss measurements, adsorption studies, 

and computational analysis.  

The objective of this research is to assess the 

effectiveness of 4-Acetamidoantipyrine as a corrosion 

inhibitor for mild steel in hydrochloric acid solutions. 

The specific objectives include: 

1. Determine the corrosion rate of mild steel in the 

presence of varying concentrations of 4-

acetamidoantipyrine. 

2. Investigate the inhibition efficiency of 4-

acetamidoantipyrine at different concentrations, with 

a focus on achieving maximum efficiency. 

3. Study the adsorption behavior of 4-

acetamidoantipyrine on the surface of mild steel and 

analyze its adherence to the Langmuir adsorption 

isotherm. 

4. Utilize computational analysis to explore the 

interaction between the inhibitor's nitrogen and 

oxygen atoms and the metal surface, providing 

insights into the binding mechanism. 

5. Highlight the significance of 4-acetamidoantipyrine 

as a corrosion inhibitor and its potential for 

safeguarding mild steel in aggressive hydrochloric 

acid environments. 

6.  

 
Figure 1: The chemical structure of 

acetamidoantipyrine. 
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2. Experimental 

2.1. Weight loss measurements 

The mild steel samples utilized in this study were 

provided by The Metal Samples Company and 

possessed the following composition (wt. %): carbon 

(0.210), manganese (0.050), silicon (0.380), aluminum 

(0.010), sulfur (0.050), phosphorus (0.090), and iron. 

To assess the corrosion behavior of the samples, weight 

loss measurements and electrochemical techniques 

were employed. Prior to testing, the mild steel samples 

underwent preparation steps, including grinding with 

emery paper, washing with double-distilled water, 

degreasing with ethanol, and subsequent drying at 

room temperature. For the creation of the corrosive 

solution, a 1 M hydrochloric acid solution was 

prepared by diluting 37 % analytical grade HCl 

(Merck-Malaysia) with double-distilled water. Varying 

amounts of acetamidoantipyrine were added to adjust 

the concentration. The samples were then immersed in 

the solution for a specified duration and evaluated for 

any indications of corrosion or degradation. The 

corrosion rate (CR), inhibition efficiency (IE %), and 

surface coverage (θ) were calculated according to the 

NACE standard. The experiments were conducted at 

different concentrations of acetamidoantipyrine, 

temperatures, and immersion times to comprehensively 

assess its effectiveness as a corrosion inhibitor in acidic 

media. Equations 1–3 [19, 20] were used to calculate 

the corrosion parameters. 
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2.2. Adsorption isotherms  

Analyzing the adsorption isotherm type provides 

valuable information about the characteristics of the 

compounds under investigation. To evaluate the 

surface coverage (θ) of the inhibitors, different 

adsorption isotherms, such as Langmuir, Frum-kin, and 

Temkin, can be employed. In this study, weight loss 

measurements were employed to determine the surface 

coverage (θ) values for various inhibitor concentrations 

in acidic media. The test samples had dimensions of 

1.0 × 1.0 × 0.1 cm, and weight loss measurements were 

conducted using a scale with a sensitivity of 0.001 g. 

 

2.3. DFT calculations 

Quantum chemistry calculations were performed using 

the Gaussian 09 software [21]. To optimize the 

inhibitor's structure in the gas phase, the B3LYP 

method with a 6-31G
++

(d,p) basis set was employed. 

The ionization potential (I) and electron affinity (A) 

were determined as EHOMO and ELUMO, respectively, 

following Koopman's theorem [22, 23]. Equations 4 

and 5 were utilized to calculate the values. 
 

  -  O O (4) 
 

  -  O O (5) 
 

Equations 6–9 were employed to calculate quantum 

chemical parameters including electronegativity (χ), 

hardness (η), softness (σ), and transferred electrons 

fractional number (ΔN) [24, 25]. 
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The inhibitor's electronegativity and hardness can 

be denoted as χ_inh and η_inh, respectively (with Fe as 

a reference, where χFe     eV and ηFe   0 eV). 

Equations 6 and 7 were used to calculate these values. 

 

3. Results and Discussion 

3.1. Effects of inhibitor concentrations, 

immersion periods and Temperatures 

In this study, the potential of 4-acetamidoantipyrine as 

a corrosion inhibitor for mild steel in a hydrochloric 

acid solution was investigated. The efficacy of the 

inhibitor was evaluated using weight loss experiments, 

adsorption studies, and computational analysis 

techniques [26]. The experimental results demonstrated 

that the corrosion rate of mild steel decreased as the 

concentration of 4-acetamidoantipyrine increased, with 

a maximum inhibition efficiency of 91.1 % observed at 

a concentration of 500 ppm. The adsorption behavior 

of the inhibitor on the mild steel surface followed the 

Langmuir adsorption isotherm, indicating the 
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formation of a monolayer [27]. Through computational 

analysis, it was revealed that the inhibitor molecule 

interacted with the metal surface through the nitrogen 

and oxygen atoms of the pyrazole and amide groups. 

These findings highlight the potential of 4-

acetamidoantipyrine as an effective corrosion inhibitor 

for mild steel in a hydrochloric acid solution. 

To evaluate the corrosion inhibition characteristics 

of acetamidoantipyrine, mild steel samples were 

subjected to immersion in a 1 M hydrochloric acid 

(HCl) solution containing varying inhibitor 

concentrations (ranging from 100 to 1000 ppm) for 

different immersion durations (ranging from 1 to 48 

hours) at a temperature of 303 K [28]. The study 

findings, depicted in Figure 3, illustrate the influence 

of acetamidoantipyrine concentrations on the corrosion 

rate and inhibition efficiency of the metal samples at 

different immersion periods [29]. 

The experimental findings, as illustrated in Figure 

4, demonstrated a significant reduction in the corrosion 

rate as the concentration of acetamidoantipyrine 

increased. Notably, the highest inhibition efficiency 

was achieved at a concentration of 1000 ppm, resulting 

in a reduction of approximately 70 % compared to the 

100 ppm concentration [30]. Furthermore, the 

inhibitory efficacy was found to be influenced by the 

immersion period, with longer immersion times leading 

to greater inhibitory effects. For instance, at a 

concentration of 1000 ppm acetamidoantipyrine, the 

corrosion rate was observed to be lowest after 48 hours 

of immersion, exhibiting an 80 % decrease compared 

to the 1-hour immersion period [31]. The inhibitory 

efficiency of acetamidoantipyrine on metal substrates 

showed a rapid increase during the initial 10 hours of 

immersion, followed by a stable inhibitory effect 

between 10 and 24 hours. However, after 24 hours, a 

gradual decline in inhibitory efficacy was observed, 

possibly due to the depletion of acetamidoantipyrine 

molecules resulting from their reaction with the metal 

surface [32]. The adsorption of acetamidoantipyrine 

molecules onto the metal substrate plays a crucial role 

in enhancing the inhibitory effect by forming a uniform 

coating, acting as a protective barrier against corrosion. 

Nevertheless, extended immersion periods exceeding 

24 hours led to a decrease in inhibitory efficacy. 

 

 

Figure 2: CR and IE % of mild steel after immersion in a 

HCl for 5 hours at 303 K, with various concentrations of 
acetamidoantipyrine. 

 

 

Figure 3: CR and IE % of mild steel exposed to a 

corrosive environment for different immersion times at 
303 K with various concentrations of 

acetamidoantipyrine. 

 

 
Figure 4: acetamidoantipyrine concentrations effect on 

the rate of corrosion and inhibitory efficiency of metallic 
coupons in 1 M HCl at different temperatures for 5 h. 
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The effectiveness of acetamidoantipyrine as a 

corrosion inhibitor on metallic substrates was further 

investigated at various concentrations (ranging from 

100 ppm to 1000 ppm) and temperatures (ranging from 

303 to 333 K) using mass reduction techniques after a 

5-hour immersion period. The results revealed that 

higher temperatures were associated with increased 

corrosion rates and decreased inhibition efficiency  

of acetamidoantipyrine. This could be attributed to the 

heightened activity of corrosive species in  

the solution and the thermodynamic instability of the 

inhibitor at elevated temperatures. Additionally, the 

rate of reaction between the inhibitor and metallic 

substrate may contribute to the decline in its inhibition 

efficiency [34]. The high adsorption density of 

acetamidoantipyrine on the metal substrate plays a 

crucial role in its stability and efficacy as a corrosion 

inhibitor. The formation of a uniform coating prevents 

the access of corrosive agents to the metal surface, 

thereby offering effective protection. These findings 

collectively suggest that acetamidoantipyrine  

holds promise as an alternative corrosion inhibitor  

for safeguarding metal surfaces [35]. The  

study investigated the inhibitory potency of 

acetamidoantipyrine at different concentration levels 

on mild steel corrosion at varying temperatures. 

Results showed that as temperature increased, the 

inhibitory potency of acetamidoantipyrine decreased at 

all concentration levels, indicating physisorption. 

Inhibition efficiencies were further evaluated at 

temperatures ranging from 303 to 333 K, and at a 

concentration of 500 ppm, acetamidoantipyrine 

exhibited considerable inhibitive performance. 

However, the inhibition efficiency slightly decreased as 

temperature increased, particularly at the highest 

concentration level of 1000 ppm, which could be due 

to both physical and chemical adsorption mechanisms. 

These findings suggest that the effectiveness of 

acetamidoantipyrine as a corrosion inhibitor depends 

primarily on the temperature of the environment and 

can be used to optimize its use on mild steel surfaces. 

The present study aimed to explore the inhibitory 

effectiveness of acetamidoantipyrine at different 

concentrations on the corrosion of mild steel  

under varying temperatures. The results revealed 

a decrease in the inhibitory potency of 

acetamidoantipyrine with increasing temperature, 

irrespective of the concentration levels, indicating a 

physisorption mechanism. Further evaluation of 

inhibition efficiencies was performed within the 

temperature range of 303 to 333 K, with a 

particular focus on a concentration of 500 ppm 

acetamidoantipyrine. At this concentration, 

acetamidoantipyrine exhibited notable inhibitive 

performance. However, as the temperature increased, a 

slight decrease in inhibition efficiency was observed, 

especially at the highest concentration level of 1000 

ppm. This phenomenon can be attributed to the 

combined influence of physical and chemical 

adsorption mechanisms.  

Based on these findings, it can be inferred that the 

effectiveness of acetamidoantipyrine as a corrosion 

inhibitor is primarily dependent on the temperature of 

the surrounding environment. These insights are crucial 

in optimizing the application of acetamidoantipyrine 

for protecting mild steel surfaces against corrosion. 

 

3.2. Adsorption isotherm 

The aim of this investigation was to analyze the 

interaction between acetamidoantipyrine particles and 

the metallic substrate by studying the adsorption 

isotherm. To understand the adsorption mechanism, 

surface coverage values were obtained through 

gravimetric tests, and three different isotherm models, 

namely Temkin, Freundlich, and Langmuir, were 

employed. The analysis revealed that the Langmuir 

isotherm model provided the best fit for describing the 

adsorption process, indicating a monolayer adsorption 

with a fixed maximum capacity. The Temkin isotherm 

model suggested that the heat of adsorption governed 

the adsorption process, while the Freundlich isotherm 

model proposed that the surface heterogeneity of the 

adsorbent controlled the process, implying a multi-

layer adsorption process. The utilization of the 

Langmuir isotherm model can assist in determining the 

maximum adsorption capacity of the adsorbent and the 

uptake of metal ions under different conditions. 

Meanwhile, the Temkin and Freundlich isotherms 

provide valuable insights into the nature of the 

adsorption process, including the role of heat and 

surface heterogeneity, respectively [36-38]. These 

findings have significant implications in the design and 

optimization of adsorption processes for the removal of 

metal ions from aqueous solutions. The Langmuir 

adsorption isotherms exhibited a good fit to the data, 

with a high regression coefficient (R
2
) of 0.995 for 

acetamidoantipyrine. Thermodynamic parameters are 

presented in Table 1. 
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Table 1: Thermodynamic parameters of acetamidoantipyrine at the Temperature rang (303-333 K. 

Parameter 303 K 313 K 323 K 333 K 

R2 0.995 0.994 0.993 0.988 

Slop 0.0096 ± 3.1994E-4 0.0095 ± 3.615E-4 0.00943 ± 3.834E-4 0.0094 ± 5.032E-4 

Intercept 1.0048 ± 0.16262 1.13654 ± 0.18377 1.3531 ± 0.1949 1.6228 ± 0.255 

 

Table 2: The quantum chemical parameters of the acetamidoantipyrine molecule. 

                                                                           

7.783 1.08 -7.783 -1.08 6.703 4.431 3.351 0.298 0.383 

 

The Langmuir adsorption isotherm plot in Figure 5 

displays the relationship between      ⁄  and     . By 

utilizing equation 12, it is possible to calculate the 

adsorption parameters. 
 

 inh θ⁄    ads 
-1   (12) 

 

In this study, the concentration of 

acetamidoantipyrine is referred to as Cinh, while the 

surface area is denoted by θ, and the equilibrium 

constant is represented by     . To determine the 

adsorption parameters (     
  and     ), the 

researchers analyzed the plot of  /θ versus   using 

equation 13. 
 

  ads
o  -   ln   .  ads  (13) 

 

The expression used to calculate the adsorption 

parameters includes the molar concentration of water 

(55.5), as well as the universal gas constant (R) and 

absolute temperature (T). 

Previous studies [39, 40] have established that the 

     
 value can provide insights into the adsorption 

mechanism. A      
  value close to -40 kJmol

-1
 

indicates chemisorption, whereas a value near -20 

kJmol
-1

 suggests physisorption. In the case of 

acetamidoantipyrine, the calculated      
 value was 

determined to be -35.87 kJmol
-1

, indicating a 

combination of both chemisorption and physisorption 

mechanisms. The negative value signifies an 

exothermic and spontaneous adsorption process. The 

dominance of the chemisorption mechanism implies 

the formation of strong chemical bonds and irreversible 

adsorption. However, the proximity to -20 kJmol
-1 

suggests that physical interactions also play a role in 

the adsorption process, which is commonly observed in 

real-world systems exhibiting a mixture of chemical 

and physical interactions [41-43]. 

 

 
Figure 5: The Langmuir model for a metallic sample in 

a 1 M HCl solution that has been treated by 
acetamidoantipyrine with different concentrations. 

 

3.3. DFT 

To analyze the reactivity and interactions between the 

inhibitor molecule and the metal surface, the 

researchers employed the frontier molecular orbital 

(FMO) theory and Mullikan charges [44]. According to 

FMO theory, the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital 

(LUMO) levels of a species determine its chemical 

reactivity. Figure 6 illustrates the optimized geometry, 

HOMO, and LUMO of the acetamidoantipyrine 

molecule, while Table 2 provides various quantum 

chemical parameters [84]. The HOMO density 

primarily concentrates over the aniline ring, whereas 

the LUMO is situated over the aniline and oxazole 

rings. A higher EHOMO value indicates enhanced 

corrosion inhibition efficiency, as it suggests that the 

species can donate electrons and form coordinate bonds 

with the empty d orbitals of metal atoms [45-49]. 
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The ELUMO value indicates the favorable 

conditions for accepting electrons through back 

donation from iron atoms, while the EHOMO value 

suggests the molecule's ability to donate electrons to 

metal atoms [50]. In the case of acetamidoantipyrine, it 

exhibits a relatively high EHOMO value and a 

reasonably low ELUMO value, making it an effective 

corrosion inhibitor.  he energy gap (       U O - 

EHOMO) serves as a measure of corrosion inhibition, 

where a lower    indicates lower kinetic stability of 

the molecule, making it more polarizable and easier to 

adsorb on the metal surface [51, 52]. To determine the 

molecule's point of approach to the metal surface, 

Mullikan charges were conducted and are depicted in 

Figure 7. The atoms with the highest negative charges, 

such as nitrogen and oxygen, act as the most reactive 

centers for adsorption and can donate electrons to the 

metal surface through donor-acceptor type interactions. 

 

3.4. Suggestion inhibition mechanism  

The prevention of corrosion in a solution is primarily 

attributed to the adsorption of the inhibitor onto the 

metal surface, which is influenced by various factors 

including the aggressive media type, nature and charge 

of the metal, and charge and dipole moment of the 

inhibitor [53]. However, predicting the adsorption 

mechanism is challenging due to the complex nature of 

corrosion and adsorption processes. In the case of mild 

steel in acidic media, the surface carries a positive 

charge in the absence and presence of inhibitors, as 

revealed by zero charge potential analysis [54]. 

In an acidic solution, chloride ions tend to adsorb first, 

resulting in an excess of negative charges near the mild 

steel surface [55, 56]. Some studies suggest that the 

protonated form of the inhibitor may interact with the 

negatively charged metal/solution interface, forming a 

protective film that hinders the metal's contact with the 

aggressive medium (physisorption) [57]. Alternatively, 

the inhibitor may establish coordinate bonds with  

the d-orbitals of iron atoms and the lone pair of sp2 

electrons in heteroatoms, as well as the pi electrons in 

 

 

 
Figure 6: (a) Acetamidoantipyrine optimized chemical structure and (b) acetamidoantipyrine molecule energy gap 

diagram. 

 

 

 
Figure 7: Acetamidoantipyrine molecule atomic charges. 
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the benzene ring (chemisorption). Hence, both 

adsorption models can explain the effective corrosion 

inhibition properties of acetamidoantipyrine. To gain a 

deeper understanding of how organic compounds 

prevent corrosion, it is crucial to investigate their 

attachment to the metal surface. The ability of most 

organic corrosion inhibitors to hinder corrosion is related 

to their affinity for the metal/solution interface. 

Adsorption isotherms can be utilized to study this 

phenomenon and provide insights into the adsorption 

mechanism and the types of interactions between the 

inhibitors and the metal surface. Corrosion inhibitors can 

adsorb at the interface through physical adsorption, 

involving weak interactions arising from electrostatic 

forces between charged molecules and the metal surface, 

or through chemical adsorption, involving electron 

sharing between inhibitors and the d-orbitals  

of iron surface atoms. The inhibitory activity  

of these chemicals follows the trend O < N < S < P. 

Figure 8 depicts the detailed interaction between 

acetamidoantipyrine molecules and the mild steel 

surface. The inhibitor molecule attaches to the surface 

through two adsorption routes. The first route involves 

the interaction between unpaired electrons and the 

vacant d-orbitals of Fe atoms. The second route involves 

donor-acceptor interactions between the lone pairs of 

electrons in oxygen and nitrogen heteroatoms and the 

unoccupied d-orbitals of iron surface atoms. In these 

interactions, the active electrons are shared with the d-

orbitals of the Fe atom. 

 

 
Figure 8: Suggestion mechanism for corrosion 

inhibition reaction of metallic substrate in inhibited 
corrosive solution. 

 

3.5. Comparative evaluation of 4-Acetamido-

antipyrine and existing corrosion inhibitors for 

mild steel in hydrochloric acid environments 

Previous research has explored a variety of organic and 

inorganic inhibitors, such as benzotriazole, imidazoline 

derivatives, and organic salts, for protecting mild steel 

against corrosion in hydrochloric acid environments. 

These studies have reported varying degrees of corrosion 

inhibition, with some achieving impressive inhibition 

efficiencies. By comparing our results with these 

published studies, we can evaluate the potential of 4-

acetamidoantipyrine as a corrosion inhibitor in relation 

to existing inhibitors. This comparison allows us to 

determine whether 4-acetamidoantipyrine exhibits 

superior inhibitory performance, demonstrating its 

viability as a promising candidate for corrosion 

protection in hydrochloric acid environments [59-67]. 

Furthermore, examining the mechanisms of action 

and adsorption behaviors of different inhibitors can 

provide valuable insights into the underlying processes 

governing corrosion inhibition. This comparative 

analysis aids in understanding the unique features and 

advantages of 4-acetamidoantipyrine as a corrosion 

inhibitor, highlighting its potential contributions to the 

field. Overall, the inclusion of comparison studies with 

other published research enhances the 

comprehensiveness and scientific rigor of our 

investigation. It allows us to position our findings within 

the existing body of knowledge, providing a 

comprehensive assessment of the inhibitory capabilities 

of 4-acetamidoantipyrine and its potential for practical 

applications in corrosion protection. 

 

4. Conclusion 

In this study, the potential of acetamidoantipyrine as a 

corrosion inhibitor for mild steel in a hydrochloric acid 

solution was investigated. The results demonstrated 

that acetamidoantipyrine had excellent corrosion 

inhibition properties, with a protection efficiency of 

91.1 % at 500 ppm concentration. The inhibition 

efficiency increased with higher inhibitor concentration 

but decreased with increasing temperature. The 

Langmuir adsorption isotherm was employed to 

analyze the adsorption mechanism, which indicated the 

formation of a protective adsorption layer on the mild-

steel surface that inhibited the corrosion rate. Density 

functional theory (DFT) was also utilized to understand 

the correlation between inhibition activity and 
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molecular structure, revealing that acetamidoantipyrine 

had high adsorption-inhibition activity. Both 

experimental and theoretical analyses provided 

consistent results, suggesting that acetamidoantipyrine 

could be a promising candidate for use as a corrosion 

inhibitor for mild steel in acidic conditions. This study 

provides important insights into the underlying 

inhibitory mechanisms and paves the way for future 

research in this area. 
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