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pectral images are the most valuable data than can be achieved using 

2D sensors. Spectral estimation using data with a few channel cameras 

has been the subject of many studies. It is common to use color filters in 

front of the lens for increasing dimensionality of data. However, spectral 

estimations are prone to suffer from colorimetric errors. To address this problem 

it was shown that this problem is a special case of error-free spectral estimation 

problem. Considering the fact that most of RGB cameras tend to be colorimetric, 

using geometrical modeling of the problem, it was shown that adding a shoot 

with bare lens to the sensor’s data can solve the problem. The notion has been 

tested in different scenarios and the efficiency of the proposed method has been 

proved in the scenarios. Results showed that if the camera is acceptably 

colorimetric, the proposed method can even leads to error-free colorimetric 

performance. Prog. Color Colorants Coat. 13 (2020), 121-130© Institute for 

Color Science and Technology. 
 

 

  

  

  

  

  

1. Introduction 

Digital cameras have revolutionized the photography 

industry. Images are taken within a few hundredths of 

seconds with software enabled correction capability. 

Unwanted shoots can easily be removed without the 

fear of spoiling one frame of raw negative stock. 

Despite this lovely simplicity for the users, there are 

troubles that the manufactures should overcome. One 

of the most important challenges is that these devices 

have to be colorimetric. Deviation from colorimetric 

behavior can cause objectionable wrong colors due to 

observer metamerism [1, 2].  

Beside many reported color measurement 

applications, there is plethora of studies on spectral 

reflectance/radiance measurement using digital 
cameras. Regardless of using scientific or industrial 

digital cameras in these studies, the key concept is to 

increase the dimensionality of the image data with 

adding a few more colored filters or shooting with 

more than one illumination condition [3-6]. These 

setups will change the RGB camera or scanner to 

spectral one, giving valuable spatial-spectral data of 

any sample. This technique has been utilized for 

making dream of spectral color management come true 

[7]. 

In addition to factory mounted color filters on the 

CMOS or CCD sensors, it is common to add more 

extra filters in front of camera lens. Filters can be 

added manually or automatically via a filter wheel. A 

conventional RGB camera equipped with 2 filters can 

give 6 channels from which spectral data can be 

estimated. Although adding filters to a RGB camera 

can increase the data dimensionality, it may deteriorate 

its inherent colorimetric characteristic due to rotation 

of sensor-filter-light vector subspace from eye-light 

subspace [2, 3]. That is, the color filter may decrease 
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colorimetric performance while enhancing spectral 

performance of the imaging system.  

A practical necessity for resolving this problem is 

presented in this paper. The method is based on 

concurrent spanning of colorimetric and spectral 

subspaces. To do so, a brief review of the linear model 

of camera is presented in section 2. As sensitivity and 

noise of sensor enter into the estimator operator, a 

technique for estimation of camera sensitivity and 

intrinsic noise of sensor is studied in sections 3 and 4, 

respectively. Afterwards, using algebraic and 

geometrical modeling of the problem, the core idea of 

the paper is presented in section 5. Finally, the 

functionality of the proposed idea has been tested using 

sensitivities of a commercial RGB digital camera. 

Throughout the paper, small lowercase letters 

denote scalars. Small boldface letters are used to 

indicate vectors and capital bold face letters are used 

for matrices. All of the matrices and the vectors are 

column wise.  

 

2. Linear Model of Camera 

CMOS and CCD sensors have an inherent 

characteristic to add the signals generated from 

different wavelengths. That is, for a polychromatic 

spectral signal, the camera response would be the sum 

of the responses for each wavelength. It seems as if 

camera signals are dot product of the spectral stimuli 

and the camera sensor sensitivities. So the well-known 

linear model of signal model has been used for 

modeling the camera as shown in Equation 1. 
 

t= +c W Lr n  (1) 

 

where, c is column vector of camera responses, W 

shows  the camera sensor sensitivity matrix, L is a 

diagonal matrix with the light source radiance on its 

main diagonal, r denotes the reflectance of a sample 

and the superscript t denotes transpose of a matrix. For 

simplicity, it is assumed that L is combined with W 

producing matrix WL. Assuming zero noise in the 

model, Equation 2 is rewritten as: 
 

t=
L

c W r  (2) 

 

A wise criterion for estimation of r from camera 

responses is to minimize the root mean square of 

estimation error for some selected rs. It was shown that 

the linear operator that satisfies this criterion is the 

well-known Wiener filter [8]. Wiener filter estimation 

is shown in Equation 3. 
 

( ) 1tˆ +
−

=
r L L r L n

r K W W K W K c  (3) 

 

Where Kr and Kn are covariance matrices of 

reflectance and noise, respectively, and r̂  is the 

estimation of reflectance using camera response c .  

As sensitivity and noise of the imaging system are 

prerequisites of Eq. 3, a brief review about estimation 

of sensitivities and noise of an imaging system is 

presented in the following sections. 

 

3. Sensitivity Measurement 

Using an image of colored chart, a system of linear 

algebraic equations could be written for estimation of 

the spectral sensitivities of the camera.  Taking 

transpose from both side of Equation 2 and solving WL 

for each camera channel leads to a linear system of 

equations as shown in Equation 4. 

 

, , , .., nt t

i c
i =

L
R W = c 1  (4) 

 

Where R and nc
 denote the matrix of reflectances 

and the number of camera channels, respectively. 

It was shown in many literatures [9-12] that a few 

basis vectors can cover most of the reflectance 

databases. This shows that the singular values are 

approximately zero for other dimensions which itself 

causes Equation 4 to be an ill-posed problem. Solving 

this equation using simple pseudo-inverse solution will 

result in spiky answer. The smooth behavior of the 

sensitivity curves of the imaging sensors is a good 

criterion for solving the problem of sensitivity 

estimation. Thus, a simple solution is to avoid singular 

values that are close to zero. This would eliminate the 

role of the last Eigen vectors which cause fluctuations 

in the answer. This technique, called truncated singular 

value decomposition (T-SVD), has been fully reviewed 

by Hansen [13]. By using singular value decomposition 

of R, the answer of Equation 4 could be written as 

Equation 5. 
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Where nr and nt are the rank of the reflectance of R 
and truncation point of T-SVD technique, respectively. 

σ, u, v are singular value, left and right basis vectors of 

singular value decomposition (SVD) of reflectance 

matrix of R. It should be emphasized that the only way 

to control the accuracy of estimation of sensitivities is 

the direct measurement of the sensitivities [14, 15] or 

inquiring from the manufacturer. 

 

4. Noise 

Noise is an indivisible part of an imaging system. It can 

be regarded as uncertainty of the imaging device 

signals. Although noise is divided into two signal 

dependent and independent parts, it is common to only 

assume the signal dependent part which is correlated to 

the signal by a signal to noise ratio (SNR) as defined in 

Equation 6 [4, 16, 17]. 
 

(((( ))))
(((( ))))10

trace 
SNR 10 log .

trace

t    
    ====
    
    

rL L

n

W K W

K
 (6) 

 

If noise is white, then 
 

nσ=
2

nK I  (7) 
 

And for a given SNR, noise variance is calculated 

as: 
 

( )2

SNR

10

trace

10

t

cn

σ =

×

L r L

n

W K W
 (8) 

 

For a real camera, noise variance is calculated using 

Equation 9. 
 

( ) ( )( )( )2 1
E trace .

t

c

t t

n
σ = − −Ln Lc Wr c rW  (9) 

 

In practice, using Equations 6-8 and assuming 

white, Poisson distributed noise of the imaging system; 

noise with a definite SNR could be generated. This 

noise could be used in modeling of imaging systems. It 

is worth noting that although Kr entered into Equation 

6, this does not mean that SNR of the imaging system 

depends on the dataset. In other words, SNR represents 

the ratio of signal power to the noise power in the 

logarithmic scale and some mathematical substitution 

of this notion and some simplifications result in 

Equation 6. The accuracy of the estimated noise 

variance depends directly to the accuracy of the 

sensitivity and assumptions in modeling of noise.  

 

5. Geometrical model of the idea 

It was shown in [3] that the necessary and sufficient 

condition for having minimum error reflectance 

estimation is to cover the range of the reflectances by 

the illumination weighted sensitivities of the camera as 

shown in theorem 10.  
 

spectral
⊆ ⇔( ) ( ) E( )R R

L
R W e

 
 (10) 

is the minimum possible value independent of Kr 

 

where, R denotes the range of columns of a matrix. 

E is the expected value operator and spectral
e  is the 

spectral estimation error vector.  

Now we are going to rearrange theorem 10 in 

another way but before that let’s rephrase the current 

theorem. If R is written as =
B

R P R , where B is a set 

of basis for the reflectance set of R and PB is the 

projector operator onto B, then theorem 10 can be 

rewritten as: 
 

spectral
⊆ ⇔( ) ( ) E( )R R

B L
P W e  (11) 

is the minimum possible value independent of Kr 

 

This means that for having minimum error 

prediction of reflectances from the camera responses it 

is necessary and sufficient that the range of the 

projector operator onto the targeted subspace be a 

subset of the illumination weighted sensor subspace. 

In vector space point of view, tristimulus prediction 

means seeking projection onto the CIE color matching 

functions, that is the fundamental metamers [2, 18, 19]. 

This implies that theorem 11 could be rewritten as  
 

colorimetric
⊆ ⇔( ) ( ) E( )R R

LCMF L
P W e  (12) 

is the minimum possible value independent of Kr 

 

where, CMFL is the illumination weighted color 

matching functions and 
colorimetric

e  is the difference 

between fundamental metamers. Theorem 12 gives 

valuable criterion for the sensors of a RGB or a 

multichannel camera, i.e. illumination weighted color 

matching functions should be fully spanned by the 

illumination weighted sensitivities of the camera in 

order to have the lowest possible colorimetric error. It 

should be noted that the colorimetric error arises from 

two factors. The first is the lack of covering the 
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weighted color matching function and the second is the 

noise of the imaging system that diverts the projection 

location from its true position [20, 21]. Equation 12 has 

been driven previously by Vora et al. for a noiseless  

imaging scanner [2]. For a noisy imaging system, a 

spectral metric based on spanning of subspaces was 

developed [3]. Equation 12 is the colorimetric 

representation of this spectral metric.  

The geometrical illustration of Equation 12 is 

shown in Figure 1. In this figure, r is a random vector 

selected from data set. WL,1 and WL,2 
are two sensor-

illumination sets. The true tristimulus value of r is OB, 

which is the projection of r onto CMFL. The estimation 

of the tristimulus values via response of the imaging 

systems 1 and 2 are OC and OE and the corresponding 

estimation errors are CB and EB. It can be seen that the 

prediction of tristimulus values via WL,1 gives lower 

error comparing to WL,2. This is because the angles 

between WL,1 and CMFL are very small comparing to 

the angle between WL,2 and CMFL. In fact, lower angle 

means better spanning as it has been shown in ref [2, 3].  

Although the current rationale justifies 

reconstruction via simple projection, as it has been 

shown in ref [3] it is quite applicable for the well-

known wiener estimation technique. However, the 

geometrical illustration would not be as simple as show 

in Figure 1, and needs deep understanding of the 

mechanism of the estimation method. The noise of the 

imaging system will result in deviation of projection 

point from its location depending of the SNR of the 

system. The uncertainty due to the noise is shown with 

parenthesis on WL,1 and WL,2 axes.  

 

6. Experimental 

A. Imaging system setup 

A Canon Kiss X3 camera was used for implementation 

of the proposed algorithm. According to the device 

specifications, the camera gives 14 bit raw images. Raw 

format was used for the shots. Using an open source 

program, named dcraw [22], raw shoots were developed 

under linear gamma and 16 bits digital quantization 

level. No image compression was used in developments. 

Using 12 central gray patches of Gretag Macbeth Color 

Checker® DC (CCDC), it was seen that the camera is 

acceptably linear for its all 3 channels. Using a white 

card, vignetting and non-uniformity of illumination was 

corrected. Natural light of noon daylight on a sunny day 

was used for the illumination. In order to have the same 

viewing/measurement geometry, reflectances of the 

chart’s color patches were measured using 

GretagMacbeth Color Eye 7000 spectrophotometer. 

 

B. Spectral sensitivity measurement  

CCDC color chart was used for estimating the spectral 

sensitivities of the camera. It has been shown [4] that 

maximizing the colorimetric characteristic of the 

sensitivities is a good criterion for choosing the number 

of singular values. Sensitivities of the camera channels 

have been measured using T-SVD method and 

choosing 6, 5 and 5 first singular values for red, green 

and blue channels.  

The use of simulated camera signals instead of real 

camera seems unrealistic at first glance; it has the 

advantage of avoiding manufacturing real filters. 

Although it has been shown that filters could be 

optimized considering their constructability [4], this 

would even have some drawbacks including limiting 

the filters to the color primaries spectral gamut and the 

spatial defects of the physical filters. 

 

 
 

Figure 1: Illustration of spectral and colorimetric 

estimation of an imaging system using simple projection 

method. 
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C. Filter design and optimization 

Optimizing the filter spectral transmission necessitates 

minimizing prediction errors. As there are many 

wavelengths to be optimized, numeric optimizations 

may get stuck in local optima. Moreover, the optimized 

answer may not have the reasonable transmission of an 

available optical filter. In order to solve this problem, 

sum of two Gaussian functions has been used to reduce 

the optimization parameters. This is shown in Equation 

13.   
 

2 2
2

1 2

exp exp .1 2a a
µ µ

σ σ
1   − −   = − + −               

x x
y  (13) 

 

In fact, filter spectral transmission is modeled by 

just six parameters of 1a , 2a , µ1 , 2µ  , 1σ  and 2σ . The 

proposed function not only has the advantage of 

reducing the optimization parameters to 6, also it can 

model transmission of many available optical filters 

[23]. To the best of the author’s knowledge, it is 

common to use up to 2 filters for spectral estimation 

using RGB cameras [24-27] and rarely, if ever, more 

than two filters has been used. So, two methods were 

used for designing the filters. The first method was to 

leave the camera unchanged and designing the other 

filter for using with the first one to make a 6-channel 

camera. The other method was to optimize two filters 

for using in front of camera lens to make spectral 

camera. Optimization was performed using Genetic 

Algorithm. Migration, Crossover and Mutation 

fractions were adjusted to 20%, 70% and 10%, 

respectively. Population size was assumed to be 100. 

Stopping criteria was adjusted such that optimization 

continues up to 100 generations or change in the best 

fitness function value over Stall generations is less than 

or equal to 1E-6.  

Among spectral and colorimetric metrics [2, 21, 

28], the one that proposed by Mahmoudi et al. as 

“Modified Measure of Goodness” (MMOG) was 

selected as fitness function. MMOG is completely a 

spectral based metric which takes noise into account 

and is based on the spanning of subspaces as shown in 

Equation 14 [3]. 
 

( )( )( )
( )

2
MMOG

t t− +
=
trace

.
trace

L L LB r W W L r L n W

B r

P K P Q W K W K Q

P K
 (14) 

 

Where PB is the projector matrix onto basis vectors 

of the dataset, ( ) 1
t

−
=

LW L L L
Q W W W  and 

( ) 1
t t

−
=

LW L L L L
P W W W W . MMOG is a metric for 

evaluation of filter set in terms of RMSE of error. It 

varies between 1 for the best filter set and 0 for the worst 

one. The optimization algorithm seeks to minimize 1-

MMOG. 

As shown in [3], filter optimization using spectral 

metric will have infinite set of answers each has 

spanned equally the dataset. The same was also 

observed here. The optimizations end in different 

answers with comparable performance. Moreover, the 

randomness of selecting the train and test samples 

results in different solutions. So, each optimization was 

repeated 10 times to avoid getting stuck in local 

minima, premature convergences and the effect of 

training and testing datasets. 

 

D. Datasets 

Three datasets were used for checking the proposed idea. 

The first was 1269 Munsell matt data set, the second was 

color checker DC with 180 samples and the third dataset 

was a 512×512×31 spectral image consists of images of 

colorful Beads with some gray and colored patches of 

Macbeth 24 patches color checker chart. The rendered 

image of spectral image in Srgb color space is shown in 

Figure 2. For each data set, the first randomly-selected 

half of the samples was used for estimation of 

covariance matrix and the other half was used for the 

tests. Moreover, in order to study the cross dataset effect 

on the proposed idea, Munsell data set was considered as 

training set and the Beads dataset was considered as test. 

This combined state was named as Cross.  

 

 
Figure 2: Beads. 



 A. Mahmoudi Nahavandi  

126 Prog. Color Colorants Coat. 13 (2020), 121-130  

E. Simulated noisy imaging data 

The noise variance of the camera was estimated using 

Equation 9 and the SNR of the imaging system was 

estimated using Equations 6 and 7. Using the estimated 

noise variance of the camera, the responses of the 

camera to Munsell and CCDC color patches, which are 

calculated using Equation 2, were contaminated with 

noise.  

i. From Equation 8, variance of noise for a given 

SNR was calculated. 

ii. Using a Poisson random generator matrix of 

Poisson-distributed noisy numbers ( )
c sn n×X was 

generated. The subscripts are the dimensions of X , and

sn  is the number of samples. 

iii.
 c sn n×X is centered around its mean using 

Equation 15. 
 

. .1 1 1.
1 ...1 .

c s c s
s

centered n n n n
n

 = ×  X X - X  (15) 

 

iv. As the covariance matrix of the noise is not an 

Identity matrix, A is converted to centeredX  using 

transformation Y as shown in Equation 16. 
 

1

2, , .t t

centered

−
= =

X X X X X X
Y = AX A Λ Φ K Φ Λ Φ  (16) 

 

In Equation 16, 
X

Λ  is diagonal matrix of Eigen 

values and 
X

Φ is the matrix of Eigen vectors of the 

matrix X . 

v. As covariance matrix of the matrix of Y  is I

[29], the matrix Y is multiplied by nσ so as to change 

its covariance matrix to a diagonal matrix with 2σn
on 

the main diagonal. 

vi. Camera responses are added to Y  values to get 

the noisy camera responses with white noise and 

definite SNR. Noises were added in different SNRs to 

the simulated camera responses. 

 

7. Results and Discussion 

Spectral sensitivities of camera 3 channels are shown 

in Figure 3. The estimated SNR of the imaging system 

using the described method in the experimental section 

was about 35. This level of SNR was acquired using 

imaging of CCDC such that each color patches contain 

37*37 pixels. 

Vora’s measure of goodness for the sensitivities 

was measured as 0.9172 which means 23.5 degrees of 

divergence from human visual subspace (HVSS) which 

means small deviation from color matching functions 

subspace. This shows that the studied camera satisfies 

to some extent “Luther condition”. So, according to 

section 5, it would be a wise idea to take account of 

these sensitivities in modeling of the imaging system. 

Different scenarios of filter design were studied.  

 

 

Figure 3: Spectral sensitivities of canon kiss X3 channels. 
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A. Canon Kiss X3: The original sensitivities+1 

filter Vs. 2 filters 

Assuming Canon kiss X3 as sensor, camera signals 

were calculated using Equation 2. White noise variance 

was calculated using Equation 8. Afterwards, noise was 

generated using the six steps explained in section 6E. 

Then the noise was added to the camera signals to 

develop camera noisy signals.  

Filters were optimized by minimizing Equation 14. 

Filters supposed to be modeled using Equation 13 and 

the 6 and 12 parameters were optimized for one and 

two filters, respectively. The 3 datasets and the Cross 

dataset were used in the optimization. Results are 

shown in Table 1. 

As can be seen from Table 1, imaging with 2 filters 

enhanced the performance of spectral estimations 

(probably meaningful for DC and Munsell and 

significantly for Beads dataset). Meanwhile, the 

colorimetric performance does not show significant 

improvement. This implies the deviation from HVSS after 

mounting 2 filters in front of the camera lens. In “1 filter 

+camera sensors” mode, despite our expectation 

colorimetric performance does not show improvement 

probably due to the 23.5 degrees of deviation from HVSS. 

This will be discussed in more detail in the next section.  

In “2 filters” mode, the optimizer has enough 

freedom to search for better spanning the datasets, but 

not necessarily has the ability to span color matching 

functions. This could be attributed to the inherent 

fluctuations of Gaussian functions in Equation 13 

which deviate the filter-sensor subspace from HVSS in 

vector space point of view. This will be studied more in 

the next sections. 

For the Cross dataset, both colorimetric and spectral 

performances do not improve in 1 filter setup indicating 

statistical difference of Munsell and Beads datasets. 

Using 2 filters has enabled system for better spanning 

Beads dataset. 

 

B. Completely colorimetric camera: The 

original sensitivities+1 filter Vs. 2 filters 

It was also assumed that the camera possesses 

complete colorimetric behavior. Camera signals were 

contaminated with noise using the procedure explained 

in section 7-A. Filters were optimized and the 

reflectances of the test samples were estimated using 

Equation 3. Results are shown in Table 2. 

As could be seen in Table 2, while the colorimetric 

performance has been remained unchanged for DC 

dataset, it has increased significantly for Munsell and 

Beads datasets and also cross dataset case in 1 filter+ 

camera sensitivities mode.  However, there is clear 

contrast between RMSE trends and color differences. 

RMSE values for all datasets have been significantly 

decreased in “2 filters” mode at least for the Beads data 

set and the Cross case.  

Comparison of Table 1 with Table 2,  shows 

completely reverse trend between spectral and 

colorimetric metrics. In Table 1, optimizing using two 

filters has improved spectral and colorimetric 

performances while in Table 2, colorimetric 

performances decrease despite improvement of RMSE.  

Table 1: Colorimetric and spectral performance of canon kiss X3. 

 D
a
ta

 set 

Metric 

1 filter +camera sensors 2filters  

Average Max Average  Max 

D
C
 

RMSE 0.0185±0.0012* 0.0402 0.0157±0.0014 0.0336 

0

*

65/10D
E∆ 3.35±0.60 11.18 3.32±0.63 11.32 

M
unsell 

RMSE 0.0138±0.0005 0.0351 0.0128±0.0006 0.0323 

0

*

65/10D
E∆ 2.76±0.24 10.28 2.73±0.21 8.95 

B
eads 

RMSE 0.0129±0.0003 0.0377 0.0111±0.0002 0.0300 

0

*

65/10D
E∆ 3.25±0.06 8.24 3.15±0.07 7.83 

C
ross 

RMSE 0.0243±0.0002 0.0604 0.0205±0.0001 0.0565 

0

*

65/10D
E∆ 5.09±0.05 11.82 3.91±0.03 8.50 

*Uncertainties are 2 times of standard error of predictions.  
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This interesting reverse trend could be related to the 

spectral reflectance of the real objects which rarely 

possess 3 humps in their shape like color matching 

functions. In other words, although entering color 

matching functions as basis functions into 

reconstructions has the advantage of spanning HVSS, it 

may put distance between spectral reflectance subspace 

and the camera sensors.  

Comparison of these two tables in similar scenarios 

is also informative. Making the Canon Kiss X3 

colorimetric but with the same noise features enhances 

color difference significantly specifically for “1 filter + 

camera sensors” categories supporting the proposed idea 

of the current study. It was easy to notice that RMSE 

decrease were not significant in most of the cases in 

section 7-A. The remarkable improvement in 

colorimetric performance may contribute to the 

colorimetric behavior of the sensors. In other words, as it 

was shown in Equation 12, covering color matching 

functions by filters vectors guarantees minimum possible 

error in tristimulus values and their predictions. Despite 

considerable improvement in “1 filter + camera sensors” 

scenario, there still remained color differences. We 

believe that the considerable color differences in Table 2 

are due to the noise of the imaging system which is 

studied in the next section.  

 

C. Completely noiseless colorimetric camera: 

The original sensitivities+1 filter Vs. 2 filters 

In order to study the remained color differences for the 

case of “1 filter +camera sensors” in section 7-B, SNR 

was assumed to be infinite. Using the same datasets, 

the performance of the imaging system was studied for 

the optimized “filter+ camera” sensors and also for a 

set of 2 filters. Results are shown in Table . 

It can be seen from Table  that the color difference 

metric is almost zero for all data sets, while there is no 

significant difference between spectral performances. 

This proves the claim in section 5. 

These findings are in close match with the work 

published by Trussell et al. [30]. It was reported that in 

the absence of noise, the selection of filters for 

covering the span of illumination weighted color 

matching functions gives the best colorimetric 

performance. However, the result got worse as noise 

entered in the system probably due to the noise 

sensitivity of imaging system as it gets away from 

mutual orthogonality of the channels [3].  

In case of Cross dataset, in our all 3 studies 

scenarios, as it was expected, results showed 

significantly higher colorimetric and spectral 

performance compared to the Munsell and  Beads cases. 

It should be noticed that these colorimetric performances 

achieved using optimization of MMOG metric - that had 

no guarantee for colorimetric performance - resulted in 

superior colorimetric performance. 
 

 

 

 

Table 2: Colorimetric and spectral performance of a colorimetric camera. 

 D
a
ta

 set 

Metric 

1 filter +camera sensors 2filters  

Average Max Average  Max 

D
C
 

RMSE 0.0187±0.0018* 0.0390 0.0167±0.0017 0.0373 

0

*

65/10D
E∆

 
2.99±0.69 11.00 3.08±0.54 10.07 

M
unsell 

RMSE 0.0142±0.0011 0.0378 0.0130±0.0007 0.0358 

0

*

65/10D
E∆

 
2.00±0.16 6.41 2.38±0.19 9.02 

B
eads 

RMSE 0.0138±0.0003 0.0391 0.0117±0.0002 0.0343 

0

*

65/10D
E∆

 
2.31±0.04 5.42 2.62±0.04 6.43 

C
ross 

RMSE 0.0246±0002 0.0720 0.0203±0.0002 0.0587 

0

*

65/10D
E∆

  3.93±0.03 9.33 4.43±0.04 9.98 

*Uncertainties are 2 times of standard error of predictions. 
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Table 3: Colorimetric and spectral performance of a colorimetric noiseless camera. 

D
a

ta
 set 

Metric 
1 filter +camera sensors 2filters 

Average Max Average Max 

D
C
 

RMSE 0.0086±0.0012* 0.0218 0.0095±0.0014 0.0386 

0

*

65/10D
E∆

 
0.00±0.00 0.01 0.89±0.20 1.87 

M
unsell 

RMSE 0.0067±0.0004 0.0213 0.0072±0.0004 0.0257 

0

*

65/10D
E∆

 
0.00±0.00 0.01 0.47±0.05 2.31 

B
eads 

RMSE 0.0079±0.0002 0.0235 0.0077±0.0002 0.0217 

0

*

65/10D
E∆

 
0.01±0.00 0.03 0.54±0.01 3.10 

C
ross 

RMSE 0.0198±0.0002 0.0586 0.0273±0.0002 0.0709 

0

*

65/10D
E∆

 
0.02±0.00 0.05 3.42±0.03 7.71 

*Uncertainties are 2 times of standard error of predictions.  

 

8. Conclusion 

It was shown that RGB cameras can take advantage of 

their inherent colorimetric characteristic in spectral 

imaging. In cameras with close-to-colorimetric behavior, 

it would be a good idea to take in to account their 

sensitivities as set of camera channels for spectral 

estimation. Embedding camera data, which is taken with 

bare lens into the filter equipped data, not only can 

enhance the colorimetric behavior of the imaging system, 

but also preserve its spectral performance. It was seen that 

adding a shoot with a bare lens for a complete 

colorimetric noiseless camera is a necessity that cannot be 

avoided. It is worth noting that, because of signal-

independent parts of noise of imaging systems, SNR value 

decreases as signal decreases. This was not assumed in 

this paper for simplicity of the modeling. Bare lens shoot 

can have the advantage of increasing the total SNR of the 

imaging system in practice. Although spectral estimation 

using filter-equipped cameras need a reconstruction 

technique for estimation and almost all of the methods 

need some sort of training database, the presented 

technique theoretically enhances the colorimetric 

performance of the reconstructions regardless of the 

training dataset. Spectral estimation using camera data 

need a reconstruction technique for estimation. In this 

study, Wiener filter technique was used. The combination 

of other reconstruction method with the proposed idea 

could be the subject of future studies. 
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