Biotreatment of the Wastewater Containing Insoluble Pigment by Halomonas Strain Gb

Document Type : Original Article

Authors

1 Department of Chemical Engineering, Islamic Azad University, Robat Karim Branch,Tehran, Iran

2 Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Tehran, Iran

Abstract

Industrial dyeing processes produce a large amount of wastewater that contains many organic compounds such as different type of dyes and pigments, dispersing agents, surfactants which are difficult to treat. Considering that little studies have been done on biodegradation of oil-soluble azo dyes, the lake of this issue is completely felt. In this study, biotreatment of Toluidine Red (TR), an oil-soluble azo dye, was optimized under different environmental conditions. Halomonas strain Gb was capable of decolorizing TR at a pH range of 6.5-9.5 and temperature range of 25-40 °C. The optimum condition was 25 mg/L dye, pH=6.5, temperature 35 °C and 5% (w/v) NaCl. UV-Vis spectrophotometric method, high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS) analyses confirmed that biodegradation of TR was accrued successfully. According to the results, Halomonas strain Gb can be recommended as practical bacteria for the treatment of industrial wastewaters containing azo dyes with different water solubility.

Keywords


  1. Y.T. Hung, L. K. Wang, N. K. Shammas, Handbook of Environment and Waste Management: Air and Water Pollution Control, World Scientific, Singapore, 2012, Volume 1.
  2. S. Z. Yuan, H. Lu, J. Wang, J.T. Zhou, Y. Wang, G. F. Liu, Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions, Process Biochem., 47(2012), 312–318.
  3. S. Singh, S. Chatterji, P.T. Nandini, A. S. A. Prasad, K.V.B. Rao, Biodegradation of azo dye Direct Orange 16 by Micrococcus luteus strain SSN2, Int. J. Environ. Sci. Technol., 12(2014), 2161–2168.
  4. R. P. Singh, P. K Singh., R. L. Singh, Role of azoreductases in Bacterial Decolorization of azo dyes, Curr. Trends Biomedical. Eng. Biosci, 9(2017), 88-96.
  5. S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki, S. M. M. Dastgheib, Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria, Bioresour. Technol., 98(2007), 2082–2088.
  6. M. Ronald, Hand book of microbiological media, CRC Press, Taylor and Francis group, 4rd Edn.USA (2010).
  7. V. Yousefi, H. M. Kariminia, Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase, Int. Biodeter. Biodegr., 64(2010), 245-252.
  8. E.A. Erkurt, A. Unyayar, H. Kumbur, Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the Process, Process Biochem, 42(2007),1429-1435.
  9. U. U. Jadhav, V. V. Dawkar, G.S. Ghodake, S. P. Govindwar, Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS, J. Hazard. Mater, 158(2008), 507–516.
  10. M. El Bouraie, W. Salah El Din, Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater, Sustain. Environ. Res, 26(2016), 209-216.
  11. L. Ayed, A. Mahdhi, A. Cheref, A. Bakhrouf, Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization, Desalination., 274(2011), 272–277.
  12. I. Mnif, S. Sameh Maktouf, R. Raouia Fendri, M. Mouna Kriaa, S. Semia Ellouze, D. Dhouha Ghribi, Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition, Environ. Sci. Pollut. Res. Int, 23(2015), 1742-54.
  13. D. C. Kalyani, A. A. Telke, R. Dhanve, J. P. Jadhav, Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1, J. Hazard Mater., 163(2009), 735–742.
  14. M. C. Bheemaraddi, C. T. Shivannavar, S. M. Gaddad, Isolation and characterization of an azo dye Reactive Red 2 degrading bacteria from dye contaminated soil, Int. J. Pharm. Bio. Sci., 4(2013), 711-722.
  15. J. Guo, J. Zhou, D. Wang, C. Tian, P. Wang, M. Salah Uddin, A novel moderately halopholic bacterium for decolorizing azo dye under high salt condition, Biodegradation, 19(2008), 15-19.
  16. X. Meng, G. Liu, J. Zhou, Q.S. Fu, G. Wang, Azo dye decolorization by Shewanella aquimarina under saline conditions, Bioresour. Technol., 114(2012), 95-101.
  17. C. J. Ogugbue, T. Sawidis, N. A. Oranusi, Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system, Ecol. Eng., 37(2011), 2056-2060.
  18. N. S. Maurya, A. K. Mittal, P. Cornel, E. Rothe, Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH, Bioresour. Technol., 97(2006), 512–521.
  19. N. Sri Kumarani, G. Dharani, Decolorization of textile dyes by white rot fungi Phanerocheate crysosporium and Pleurotus sajor-caju, J Appl. Tech. Environ. Sanit, 1(2012), 361-370.
  20. A. Guadie, S. Tizazu, M. Melese, W. Guo, H. H. Ngo, S. Xiad, Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake, Biotechnol. Rep, 15(2017), 92-100.
  21. A. Gürses, M. Açıkyıldız, K. Güneş, M. S. Gürses, Dyes Pigm., Springer, Singapore (2016), Volume 3.
  22. H. Wang, J. Q. Su, X. W. Zheng, Y. Tian, X. J. Xiong, T. L. Zheng, Bacterial decolorization and degradation of the reactive dye Reactive Red180 by Citrobacter sp. CK3, Int. Biodeter. Biodegr, 63(2009), 395–399.
  23. M. Adosinda, M. Martins, N. Lema, J. D. Armando, J. Q. Silvestre, Comparative studies of fungal degradation of single or mixed bio-accessible reactive azo dyes. Chemosphere 52(2003), 967–973.
  24. H. Xu, T.M. Heinze, D. D. Paine, C. E. Cerniglia, H. Chen, Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract, Anaerobe.,16(2010), 114–119.
  25. H. Chen, H. Xu, T.M. Heinze, C. E. Cerniglia, Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilus and Lactobacillus fermentum, J. Ind. Microbiol. Biotechnol., 36(2009), 1459–1466