γ-CD-Functionalized TiO2 Nanoparticles For the Photocatalytic Degradation of Organic Dyes

Document Type : Original Article

Authors

Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran

Abstract

In this work, an efficient photocatalyst based on gamma-cyclodextrin-modified titanium dioxide nanoparticles (TiO2/γ-CD NPs) was synthesized and used for photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB). The results of FESEM, EDX, TEM, FT-IR, XRD and BET surface area measurement showed that the TiO2 NPs were effectively modified with γ-CD. The photocatalytic properties of the TiO2/γ-CD NPs were evaluated by the degradation of some organic dyes in aqueous solution under ultraviolet (UV) light illumination. The experimental results confirmed that the TiO2/γ-CD had exhibited efficient photocatalytic activities higher than that of the pure TiO2 in the degradation of investigated dyes. The γ-CD could increase the lifetime of the excited states of the unreactive guests and facilitate electron transfer from the excited dye to TiO2 conduction band. The results indicated that the first-order kinetic model well describes the degradation of the dyes by TiO2/γ-CD NPs. the photocatalytic reaction rate constants for RhB, MO and MB dyes in the presence of TiO2/γ-CD NPs were 4, 5.6 and 4.2 times higher than that of pure TiO2, respectively. In addition, the TiO2/γ-CD NPs can be used for several times in real application as an effective photocatalyst. 

Keywords


  1. A. Mohammadi, P. Veisi, High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater, J. Environ. Chem. Eng., 6(2018), 4634–4643.
  2. X. Zhang, X. Li, N. Deng, Enhanced and selective degradation of pollutants over cyclodextrin/TiO2 under visible light irradiation, Ind. Eng. Chem. Res., 51(2012), 704–709.
  3. S. D. Dalt, A. K. Alves, C. P. Bergmann, Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites, Mater. Res. Bull., 48(2013), 1845–1850.
  4. B. Royer, N. F. Cardoso, E. C. Lima, J. C. P. Vaghetti, N. M. Simon, T. Calvete, R. C. Veses, Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions−kinetic and equilibrium study, J. Hazard. Mater., 164(2009), 1213–1222.
  5. D. S. Brookstein, Factors associated with textile pattern dermatitis caused by contact allergy to dyes finishes, foams, and preservatives, Dermatol. Clin., 27(2009), 309–322.
  6. P. A. Carneiro, G. A. Umbuzeiro, D. P. Oliveira, M. V. B. Zanoni, Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperses dyes, J. Hazard. Mater., 174(2010), 694–699.
  7. R. O. A. Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. P. Oliveira, G. A. Umbuzeiro, Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutat. Res. Genet. Toxicol. Environ. Mutagenesis, 626(2007), 53–60.
  8. W. Zhang, K. Wang, Y. Yu, H. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J., 163(2010), 62–67.
  9. A. Mehrizad, P. Gharbani, Synthesis of ZnS decorated carbon fibers nanocomposite and its application in photocatalytic removal of Rhodamine 6G from aqueous solutions, Prog. Color Colorants Coat., 10(2017),13-21.
  10. M. Mazarji, Gh. Nabi Bidhendi, N. M. Mahmoodi,  Mathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid, Prog. Color Colorants Coat., 10(2017), 173-180.
  11. N. M. Mahmoodi, Z. Mokhtari-Shourijeh, Preparation of polyacrylonitrile–Titania electrospun nanofiber   and its photocatalytic dye degradation ability, Prog. Color Colorants Coat., 10(2017), 23-30.
  12. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodriguez, Comparison of different advanced oxidation processes for phenol degradation, Water Research Water Res., 36(2002), 1034–1042.
  13. M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: A general review, Appl. Catal., B., 47(2004), 219–256.
  14. Y. H. Ng, A. Iwase, N. J. Bell, A. Kudo, R. Amal, Semiconductor/reduced grapheneoxide nanocomposites derived from photocatalytic reactions, Catal. Today, 164(2011), 353–357.
  15. M. R. Hoffmann, S. T. Marin, W. Choi, D. W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1995), 69–96.
  16. A. Mohammadi, A. Aliakbarzadeh Karimi, H. Fallah Moafi, Adsorption and photocatalytic properties of surface-modified TiO2 nanoparticles for methyl orange removal from aqueous solutions, Prog. Color Colorants Coat., 9(2016), 249-260.
  17. H. Zangeneh, A. A. L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Ind. Eng. Chem., 26(2015), 1–36.
  18. A. D. Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 211-212(2012), 3–29.
  19. S. H. Mousavi, A. Mohammadi, A cyclodextrin/glycine-functionalized TiO2 nano-adsorbent: Synthesis, characterization and application for the removal of organic pollutants from water and real textile wastewater, Process Saf. Environ. Prot., 114(2018), 1–15.
  20. S. H. Mousavi, F. Shokoofehpoor, A. Mohammadi A, Synthesis and characterization of γ-CD-modified TiO2 nanoparticles and its adsorption performance for different types of organic dyes, J. Chem. Eng. Data, 64(2019), 135–49.
  21. K. Liu, H. Fu, Y. Xie, L. Zhang, K. Pan, W. Zhou, Assembly of  β-cyclodextrin scatting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C, 112(2008), 951–7.
  22. N. M. Dimitrijevic, T. Rajh, Z.V. Saponjic, L. de la Garza, D. M. Tiede, Light-induced charge separation and redox chemistry at the surface of TiO2/host-guest hybrid nanoparticles, J. Phys. Chem. B, 108(2004), 9105–9110.
  23. W. Zhou, K. Pan, L. Zhang, C. Tian, H. Fu, Solar-induced self-assembly of TiO2–β-cyclodextrin–MWCNT composite wires, Phys. Chem. Chem. Phys., 11(2009), 1713–1718.
  24. J. W. Kim, W. T. Nichols, Hierarchically assembled titania-cyclodextrin nano-networks, Mater. Lett., 67(2012), 11–13.
  25. I. Willner, Y. Eichen, A. J. Frank, Tailored semiconductor-receptor colloids: improved photosensitized hydrogen evolution from water with titanium dioxide-.beta.-cyclodextrin colloids, J. Am. Chem. Soc., 111(1989), 1884–1886.
  26. I. Willner, Y. Eichen, Titanium dioxide and cadmium sulfide colloids stabilized by .beta.-cyclodextrins: tailored semiconductor-receptor systems as a means to control interfacial electron-transfer processes, J. Am. Chem. Soc., 109(1987), 6862–6863.
  27. I. Willner, Y. Eichen, B. Willner, Super molecular semiconductor receptor assemblies: improved electron transfer at TiO2-β-cyclodextrin colloids interfaces, Res. Chem. Intermed., 20(1994), 681–700.
  28. X. Zhang, F. Wu, N. S. Deng, Efficient photodegradation of dyes using light- induced self-assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation, J. Hazard. Mater., 185(2011), 117–23.
  29. T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer, D. M. Tiede, Surface restructuring of nanoparticles:  An efficient route for ligand−metal oxide crosstalk., J. Phys. Chem. B, 106(2002), 10543–10552.
  30. X. Zhang, Z. Yang, X. Li, N. Deng, S. Qian, β-cyclodextrin’s orientation onto TiO2 and its paradoxical role in guest’s photodegradation, Chem. Commun., 49(2013), 825–827.
  31. J. Liu, G. Liu, W. Liu, Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/grapheme oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions, Chem. Eng. J., 257(2014), 299-308.
  32. Z. Yuan, Y. Ye, F. Gao, H. Yuan, M. Lan, K. Lou, W. Wang, Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm., 446(2013), 191−198.
  33. J. Yan, Y. Zhu, F. Qiu, H. Zhao, D. Yang, J. Wang, W. Wen, Kinetic, isotherm and thermodynamic studies for removal of methyl orange using a novel β-cyclodextrin functionalized grapheme oxide-isophorone diisocyanate composites, Chem. Eng. Res. Des., 106(2016), 168–177.
  34. W. Li, R. Liang, A. Hu, Z. Huang, Y. N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts, RSC Adv., 4(2014), 36959−36966.
  35. Y. F. You, C. H. Xu, S. S. Xu, S. Cao, J. P. Wang, Y. B. Huang, S. Q. Shi, Structural characterization and optical property of TiO2 powders prepared by the sol–gel method, Ceram. Int., 40(2014), 8659–8666.
  36. A. Celebioglu, T. Uyar, Electrospun gamma-cyclodextrin (γ-CD) nanofibers for the entrapment of volatile organic compounds, RSC Adv., 3(2013), 22891–22895.
  37. S. K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercialdyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141(2007), 581–90.
  38. E. Kusvuran, O. Gulnaz, S. Irmak, O. M. Atanur, H. I. Yauuz, O. Erbatur, Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution, J. Hazard. Mater., 109(2004), 85–93.
  39. K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, C. Guillard, Photocatalytic decolorization of remazol black 5 (RB5) and rrocion red MX-5B− isotherm of adsorption kinetic of decolorization and mineralization, Appl. Catal. B: Environ., 77(2007), 100–109.
  40. M. Sleiman, D. Vildozo, C. Ferronato, J. M. Chovelon, Photocatalytic degradation of azo dye metanil yellow: optimization and kinetic modeling using a chemometric approach, Appl. Catal. B: Environ., 77(2007), 1–11.
  41. M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci., 258(2011), 1587-1591.
  42. Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis, Appl. Catal. B, 111-112(2012), 280-287.
  43. M. Sun, D. Li, W. Zhang, Z. Chen, H. Huang, W. Li, Y. He, X. Fu, Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water, J. Solid State Chem., 190(2012), 135-142.
  44. M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue, Appl. Catal. B, 63(2006), 305-312.
  45. H. P. Jing, C. C. Wang, Y. W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv., 4(2014), 54454-54462.
  46. L. V. Trandafilović, D. J. Jovanović, X. Zhang, S. Ptasińska, M. D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles, Appl. Catal., B, 203(2017), 740-752.
  47. K. Vinodgopal, D. E. Wynkoop, P. V. Kamat, Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light, Environ. Sci. Technol., 30(1996), 1660–1666.
  48. M. Stylidi, D. I. Kondarides, X. E. Verykios, Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions, Appl. Catal. B: Environ., 47(2004), 189–201.
  49. T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka, N. Serpone, Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous solutions under visible light illumination, J. Phys. Chem. B, 103(1999), 4862–4867.
  50. C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A. K. Chattopadhyay, P. V. Kamat, Environmental photochemistry on semiconductor surfaces. visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles, J. Phys. Chem., 100(1996), 8436–8442.
  51. M. A. Grela, M. E. J. Coronel, A. J. Colussi, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols. implications for the mechanism of photocatalysis, J. Phys. Chem., 100(1996), 16940–16946.
  52. Y. B. Han, B. Tuccio, R. Lauricella, F. A. Villamena, Improved spin trapping properties by β-cyclodextrin−cyclic nitrone conjugate, J. Org. Chem., 73(2008), 7108–7117.