Influence of Ni Deposition and Subsequent N+ Ion Implantation at Different Implantation Energies on Nano-Structure and Corrosion Behavior of 316 Stainless Steels

Document Type : Original Article

Authors

1 Physics and Accelerators Research School, Nuclear Science & Technology Research Institute (NSTRI), Tehran, Iran

2 Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Abstract

Nickel films of 300 nm thickness were deposited by electron beam evaporation at room temperature on 316 stainless steels. Corrosion studies of Ni coated 316 SS have been performed after N+ ion implantation at different energies of 20, 40, 60 and 80 keV. The structure and surface morphology of the films were evaluated using X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) analysis showed formation of nickel nitride phases. The corrosion behavior of the samples was evaluated by potentiodynamic polarization test in 3.5% NaCl solution. The subsequent Tafel analysis revealed nobler open circuit potential and lower corrosion current density values with increase of beam energy. By increasing the implantation energy, diffusion effect enhances, hence, larger grains with smoother surfaces are formed. The smoother surfaces show higher resistance in the corroding medium. Increase in implantation energy was beneficial in improving the corrosion resistance.

Keywords


  1. H. P. Feng, C. H. Hsu, J. K. Lu, Y. H. Shy, Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel, Mat. Sci. Eng. A, 347(2003), 123-129
  2. X. B. Tian, Y. X. Leng, T. K. Kwok, L. P. Wang, B. Y. Tang, P. K. Chu, Hybrid elevated-temperature, lowrhigh-voltage plasma immersion ion implantation of AISI304 stainless steel, Surf. Coat. Tech., 135(2001), 178-183
  3. H. Savaloni, M. Habibi, Influence of Ni deposition and subsequent N+ ion implantation at different substrate temperatures on nano-structure and corrosion behaviour of type 316 and 304 stainless steels, Appl. Surf. Sci., 258(2011), 103– 112
  4. S. R. Kappaganthu, Y. Sun, Formation of an MN-type cubic nitride phase in reactively sputtered stainless steel-nitrogen films, J. Crys. Grow., 267(2004) 385-393.
  5. R. Merello, F. J. Botana, J. Botella, M. V. Matres,M. Marcos, Influence of chemical composition on thepitting corrosion resistance of non-standardlow-Ni high-Mn–N duplex stainless steels, Corr. Sci., 45(2003), 909-921.
  6. Y. H. Jang, S. S. Kim, J.H. Lee, Effect of different Mn contents on tensile and corrosion behavior of CD4MCU cast duplex stainless steels, Mater. Sci. Eng. A, 396(2005), 302-310.
  7. W. Diqing, W. Jincheng, W. Gaifang, C. Xianyi, L. Linlin, F. Zhigang, Y. Gencang, Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3wt.%Ni based alloy, Mater. Sci. Eng. A, 494(2008), 139–142.
  8. K. Park, H. Kwon, Effects of Mn on the localized corrosion behavior of Fe–18Cr alloys, Elect. Acta, 55(2010), 3421–3427.
  9. Iu. H Toor, P. J. Hyun, H. S. Kwon, Development of high Mn–N duplex stainless steel for automobile structural components, Corr. Sci., 50(2008), 404–410.
  10. P. Saravanan, V. S. Raja, S. Mukherjee, Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel, Surf. Coat. Tech., 201(2007), 8131-8135.
  11. A. R. Grayeli Korpi, Kh. M. Bahmanpour, Influence of nitrogen ion implantation on the structure and corrosion resistance of stainless steel substrates coated with Ni nanolayer, Prog. Color Colorants Coat., 9(2016), 77-83.
  12. A. R. Grayeli Korpi, P. Balashabadi, M. M. Larijani, M. Habibi, A. Hamidi, M. Malek, Effect of gas ratio on tribological and corrosion properties of ion beam sputter deposited tin coatings, Prog. Color Colorants Coat., 11(2018), 129-135.
  13. V. Muthupandi, P. Bala Srinivasan, V. Shankar, S. K. Seshadri, S. Sundaresan, Effect of nickel and nitrogen addition on the microstructure andmechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals, Mater. Let., 59(2005), 2305-2309.
  14. T. Czerwiec, N. Renevier, H. Michel, Low-temperature plasma-assisted nitriding, Surf. Coat. Tech., 131(2000), 267-277.
  15. Y. Fu, X. Wu, E-H Han, W. Ke, K. Yang, Z. Jiang, Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions, Elect. Acta, 54(2009), 4005-4014.
  16. C. Garcia, F. Martin, Y. Blanco, M.P. de Tiedra, M.L. Aparicio, Corrosion behaviour of duplex stainless steels sintered in nitrogen, Corr. Sci., 51(2009), 76-86.
  17. F. M. Bayoumi, W. A. Ghanem, Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions, Mater. Let., 59(2005), 3311-3314
  18. E. Poorqasemi, O. Abootalebi, M. Peikari, F. Haqdar, Investigating accuracy of the Tafel extrapolation method in HCl solutions, Corr. Sci., 51(2009), 1043-1054.
  19. J. I. Langford, A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crys., 11(1978), 102-113.
  20. T. C. Huang, G. Lim, F. Parmigiani, E. Kay, Effect of ion bombardment during deposition on the x-ray microstructure of thin silver films, J. Vac. Sci. Tech. A, 3(1985), 2161-2166.
  21. S. H. Ahn, J. H. Lee, J. G. Kim, J. G. Han, Localized corrosion mechanisms of the multilayered coatings related to growth defects, Surf. Coat. Tech., 177-178(2004), 638-644.
  22. H. Klung, L. Alexander, X-Ray Diffraction Procedure, Wiley, New York, 1954, 503–524.