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his work reflects the worth of intelligent modeling in controlling the 

nanostructure morphology in manufacturing organic bulk heterojunction 

(BHJ) solar cells. It suggests the idea of screening the pool of material 

design possibilities inspired by machine learning. To fulfill this goal, a set of 

experimental data on a BHJ solar cell with a donor structure of 

diketopyrrolopyrrole (DDP) and backbone of benzothiadiazole (BT) are fed into 

a home-written artificial neural network (ANN)/genetic algorithm (GA) hybrid 

code to optimize film-casting parameters. The annealing temperature, spin 

coating spin rate, and donor/acceptor ratio taken from available literature are 

applied to give the machine chance of learning trends in the power conversion 

efficiency (PCE). DPP-BT structures virtually born in the mind of machine are 

then screened for resemblance survey to receive a tag of desired characteristic. 

The results enable device manufacturers to identify the sensitivity of designed 

molecules to specific film casting conditions, while homologous structures may 

result in similar responses against design variables. Prog. Color Colorants Coat. 

12 (2019), 107-120© Institute for Color Science and Technology. 
 

 

  

  

  

  

  

1. Introduction 

While utilization of solar energy has opened a new era 

of technology [1], a particular attention was directed 

towards organic photovoltaic (OPV) devices [2], more 

particularly bulk heterojunction (BHJ) solar cells as 

promising photovoltaic (PV) with low cost and high 

applicability [3-6]. BHJ devices are dynamically under 

development thanks to their beneficial features such as 

flexibility, transparency, printability, and roll-to-roll 

processing [7]. Nevertheless, serious challenges still 

represent to design and manufacture of devices having 

adequate efficiency and durability; what was the reason 

behind recent advances in the field for developing new 

generations of solar cells [8-11]. 

BHJ device maturation experienced tremendous 

progress in recent years, classically through two 

experimental routs [12]; (i) Material: design and 

synthesis of high-performance light-harvesting 

materials [13, 14]. An active layer of an ordinary 

single-junction BHJ cell consisting of an 

inhomogeneous mixture of at least two polymeric or 

small molecule component with well-aligned energy 

levels. Such a photoelectronic character contributed 

from these materials enabled absorbing photons and 

producing excitons; (ii) Device: manipulation of device 

architecture and fabrication techniques [15-18], where 

T 
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phase separation of the materials within the active layer 

leads to formation of nano-scale domains and allows 

excitons separated and create charges and then 

appropriately percolate through the active layer to 

collect on the two electrodes [19]. Inhomogeneity in 

the active layer of BHJs is accepted generally as the 

reason that makes PCE (featured by open-circuit 

voltage, Voc; short-circuit current density, Jsc; and fill 

factor, FF) dependent on fabrication parameters [20-

23]. While the Voc is known to be the reflection of 

energy levels of donor and acceptor and Jsc is 

determined by extend of light absorbed by the active 

layer, the FF can be affected by many factors, which 

complexly interact with each other [24]. One of those 

most influencing factors is morphology of the nano-

scale structure that depends on the structural 

characteristics of the materials in the mixture. 

Therefore, for a given molecular component optimizing 

cell efficiency depends on the degree of control over 

nanostructure formed during film formation [25-28]. 

The effects of fabrication parameters on PCE of 

BHJ were the subject of intensive recent studies, where 

the viscosity of the solution, the type of solvent and co-

solvents as additives [29-31], donor to acceptor ratio 

[32], film casting technique [33] and treatments of the 

layers varying temperature and solvent annealing were 

recognized as the most influential factors [3, 34]. 

Nevertheless, there have been bewilderments in the 

manipulation of such parameters, e.g. for P3HT/PCBM 

component annealing at a specific temperature [35] or 

time could facilitate crystallization of P3HT to reach a 

desired nanostructure, but some reports indicated 

deterioration of PCE by annealing [31, 36]. Thus, a 

wide variety of possibilities would be checked out by 

manipulating device manufacture parameters by 

imitation of PCE by blending theories and experiments 

[37]. 

Precise estimation of an outcome to avoid/lessen 

sources of bias requires prolonged exposure to the 

process, known as prospective study. In this sense, 

there is a continued need for looking back to 

manipulate fabrication parameters for a desired 

outcome imitated earlier, known as a retrospective 

study [38]. To deal with such a huge amount of data 

produced in retrospective ways in an intelligent 

manner, experimental data should be integrated into 

unique patterns by the aid of artificial intelligence (AI), 

data mining and machine learning [39]. 

Artificial neural network (ANN) as prime techniques 

in AI has recently implemented in the field of organic 

electronics. The exclusive feature of this technique in the 

field of organic electronics is shown to model the 

properties that are not possible to explicitly model [40, 

41], or helped to lower the computational cost of 

quantum mechanics and molecular dynamics [42-44]. 

Inspired from Quantitative Structure–Activity 

Relationships (QSAR) with their almost old history in 

designing drugs, a fresh line of thought has emerged 

recently for computer-aided researches in the field of 

organic electronics [45-48]. A growing body of 

literature has presented improvements in aspects of 

machine learning in photovoltaics mainly by high-

throughput screening (HTS) [49, 50], from generating 

and handling numerous material structures in machine, 

digging technics and models [51-54], to delivering 

results [55-57]. However, all these studies has tended 

to focus on generate high-performance ‘material’ 

structures and do not address ‘device’ related 

reflections. 

By pointing out the high variation in PCE  of the 

benchmark device of P3HT/PCBM [58], Alan Aspuru-

Guzik underlines that the current screening studies are 

directed toward filtering those ‘designed molecules’ 

with undesired electronic levels and do not deal with 

the big impact of device optimizations on PCE [55]. 

Therefore, complexities in sensitivity of PCE to 

fabrication parameters highlights a tremendous surge in 

the use of computer-aided approaches to address device 

considerations in the search for higher PCEs. 

Consequently, few AI studies have addressed 

fabrication PV devices. The combined use of artificial 

neural network (ANN) and genetic algorithm (GA) 

methods as an advanced prospective approach based on 

an in-house computer code appeared successful in 

anticipation of levels of fabrication parameters needed 

for maximization of both durability and PCE of co-

sensitized dye solar cells with a very low error in the 

optimization of outcomes [59]. 

Looking at the HTS computational approach, we 

propose here a computer-aided protocol as add-on for 

screening designed materials for organic electronics to 

find target devise on the bedrock of machine learning 

concept. The term ‘tagging’ here has come to be used 

to refer the process of giving the identification cards to 

the molecules born in the mind of intelligent code were 

used to mimic the signature of an available device with 

optimized PCE. The donor:acceptor ratio, annealing 

temperature, and spin coating spin rate are selected as 
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typical influential parameters governing the PCE of 

fullerene BHJ solar cells [36]. A robust computer code 

was developed to imitate and mimic precisely and very 

quickly fluctuations in the performance parameters 

until reaching the best solution (highest PCE) with 

minimum error. The main outcome of the optimization 

would be the ability to predict the sensitivity of PCEs 

of similar designed DPP-BT structures to fabrication 

parameters, thereby to add new information/patterns 

about film casting signature of the resulting structures. 

A paradigm shift from prospective to retrospective 

analyses or vice versa in the field of PV device makes 

possible identifying molecular features on the 

performance of solar cells and allows for designing 

active layers very efficiently. 

 

2. Model Development 

Artificial intelligence approaches were implemented to 

unveil the complex nature of the relationship between 

different kind of problems of solar cells [39, 60]. 

Blending ANN with GAs methods, an in-house 

computer code developed and implemented in this 

work. The use of ANN and GAs approaches manifests 

construction of a mathematical model and optimization 

of the problem, respectively, towards a set of solutions 

satisfying the predetermined targets. 

We had recently new class of donor structures 

based on DPP-BT backbone under scrutiny with 

potential efficiencies of 5.5 to 6.8 % in fullerene BHJs 

and 8.5 to 10.5 % for non-fullerene (NF) BHJs [61]. To 

study the behavior of these molecules by means of the 

proposed AI technique of this research, we need an 

experimental dataset of another DPP-BT based 

molecule to feed into the model. The most important 

factors for choosing the dataset in such this study, 

regardless of the extent of its efficiencies and 

performance, is the quantity of data points and the 

similarity of the two designed and reference molecular 

backbones. The experimental data point has been used 

from BT(TDPPEHTTTC6)2:PC71BM devices from 

reference [36]. This dataset consists of 27 different film 

casting conditions on a molecule with a backbone of 

DPP-BT by full factorial experimental design with 

three levels of three intended casting variables; 

annealing temperature, donor: acceptor ratios and spin 

coating spin rate. 

The data were first classified and nominated as 

input variables (x1 to x3) and targets (y1 to y4). For 

convenience, the donor to acceptor ratio was used in 

the form of donor content, i.e. 0.3 donor content is 

equivalent of donor to acceptor ratio 30:70. Since the 

multiplication of y1, y2, and y3 provides a practical 

sense, it is defined as y4 (PCE). The developed code 

identifies each original data used for training the ANN 

and tests the rest of the data as a “scenario”. Following 

each step, the program considers them as "experiment"; 

however, in the end, it reports the best solution in 

accordance with the initial scenario corresponding to 

the experimental runs. 

For deep learning the data, we implemented the 

multi-layer perceptron (MLP) ANN technique. Since 

the ANN model cannot principally optimize the 

problem, it was combined with GAs enabling it for 

optimization and determination of the unknown 

parameters of the network (weights and biases). In 

doing so, a powerful hybrid tool was achieved enjoying 

a very high level of accuracy and the complexity of the 

problem will be controlled by the excellence of 

developed code with high potential for learning. 

To simultaneously adjust Jsc, Voc, and FF criteria, 

Non-dominated Sorting Genetic Algorithm-II (NSGA-

II) was implemented [62, 63]. This algorithm is the 

same as the single objective, though with a different 

mechanism for sorting and choosing the best 

chromosomes. 

Figure 1 demonstrates sequential steps considered 

in developing the computer code, as well as the 

structure of chromosome defined for prediction of Jsc, 

Voc, FF, and PCE criteria. The detailed information 

about single-objective and multi-objective optimization 

parts of our code, the ANN architecture and 

explanation of how the number of layers and nodes are 

defined, the type of activating function and method to 

preventing the network to over fitting can be found in 

our previous publications [64, 65]. 

The program was written in PASCAL programming 

environment (Lazarus IDE) and FPC 2.6.2. was used as 

compiler. Modeling was then performed on a desktop 

computer with Intel Core i7-3770K (3.50 GHz), 32 GB 

of memory (2133 MHz), and under Windows 7 

Ultimate 64- bit operating system. 

According to the report on error analyses and 

network statistics of the model presented in Table 1, 

the maximum 1 % training errors were obtained for 

responding variables with regard to the selected inputs 

by the model. This confirms that, in spite of the low 

number of data inputs, the model is capable to correctly 

converge the error during gradient descent process. 
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Table 1: Error analyses the performance of the model in training and testing the data points. 

Performance 
y1 (Jsc) y2 (Voc) y3 (FF) y4 (PCES.O.)* 

Training Test Training Test Training Test Training Test 

Training MSE 0.0004 0.0398 0.0004 0.0200 0.0004 0.0335 0.0004 0.0152 

Training Error (%) 0.9999 9.9776 0.9931 7.0660 0.9875 9.1523 0.9895 6.1549 

Maximum Training 

Error (%) 
3.2983 14.4459 3.3301 11.8276 3.0185 15.1071 3.0062 11.0176 

Maximum Error 

(Scenario) 
11 18 15 10 1 24 11 13 

Correlation Coefficient 0.9784 0.9887 0.9841 0.9925 

R-Squared 0.9573 0.9775 0.9684 0.9851 

Coefficient of 

Efficiency 
0.9568 0.9771 0.9679 0.9847 

Goodness of Fit (%) 79.22 84.88 82.07 87.61 

* PCE single objective 

 

 
Figure 1: Flowchart of the training, fitting and reporting process of the model along with the second phase including 

multi-objective optimization. 
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3. Results and Discussion 

3.1. PCE: Single and Multi-objective studies 

According to the corresponding model, there are three 

methods to calculate the power conversion efficiency. 

The first one is the single objective (PCES.O.) modeling 

of the 27 PCE data points, which are produced by the 

multiplication of the experimental Jsc, Voc and FF 

values in datasets. Statistical coefficients in Table 1 

show that the model is more capable to fit the trend of 

this parameter (y4) compared with the other three 

factors (y1 to y3). It means uncertainties about fitting 

the model to components of PCE is reduced by 

multiplication. 

Another method to evaluate the theoretical final 

efficiency of a cell is to multiply the predicted values 

of modeled Jsc, Voc, and FF (PCEP). Figure 2 A and B 

demonstrates the preferred ranges of inputs to reach 

higher values of PCE based on single objective 

modeling (PCES.O.) and product of modeled efficiency 

components (PCEP). Both plots show identical region 

to reach high PCE values (more than 0.69). Moreover, 

the correlation (r=0.890) between PCES.O. and PCEP is 

noteworthy as depicts that the model is reliable to 

predict the PCE either by firstly modeling the Jsc, Voc, 

and FF or single objective modeling the PCE directly 

(Figure 2 C). 

 

 

 

 
 

Figure 2: Illustrations of two methods of evaluating the PCE, single objective prediction from the ANN model (A), product 

of modeled components of the PCE (B), correlation of the results of these two methods (C). 
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The third method, the multi-objective optimization 

to find the PCE is constructed according to the highest 

possible values for each of the three outputs (y1 to y3) 

in order to find the Pareto points. Figure 3 A shows 

that many compositions of the obtained outputs can be 

considered as Pareto points. However, it is evident that 

the intended points are those that maximize the product 

of the three outputs (i.e. PCEM.O.). Figure 3 B shows 

that the obtained PCE is higher for the maximum 

values of both Jsc and FF and the optimized medium 

range of Voc. The capability of obtaining a single PCE 

by multiple recipes can be used as a controlling tool 

aimed at lowering the fabrication costs. By defining a 

manufacturing figure of merit (FOM) like equation 4, it 

is possible to rank the suggested recipes. 
 

��� �	
���

	

��
�
�	�����������	����
	����
 (4) 

 

To address the donor:acceptor ratio, in case of HTS 

where the synthetic complexity (SC) is a parameter to 

filter the designed structures [66, 67], it is possible to 

practice SC in FOM as an effective parameter related 

to the final price of the device. 

Table 2 shows the recipes suggested by the three 

methods of modeling the PCE, highest achieved PCE 

from the 27 experimental data points (PCEexp) and the 

recipe with highest FOM within results of multi-objective 

optimization and experiments. It is important to make sure 

that the machine truly learns the experimental data from 

the database when it comes to comparing the designed 

structures in HTS with the previously examined 

molecules. Comparing the individual parameters in 

modeled PCEM.O. with the PCEexp shows that the model 

can readily learn from the limited number of experimental 

data and slightly improve it. It should be notices that 

sometimes round-off toleration may cause an optimum 

point lie somewhere outside the studied range of 

variables, but here optimum data are as closely as possible 

in the neighborhood of maximum possible levels, 

successfully done by the smart code. 

 
Table 2: Recipes suggested by the methods of modeling the PCE aimed at maximizing cell efficiency or lowering the 

manufacturing cost. 

Method 
Opt-Donor 

content 

Opt-Spin 

Rate 

Opt-

Annealing 

Temp 

Opt-Jsc Opt-Voc Opt-FF PCE FOM×10^5 

PCES.O. 
Single objective 

(maximizing PCE) 
0.41 1981 28 - - - 0.73 1.32 

PCEP 

Product of 

single objectives of Jsc, 

Voc and FF 

0.45 2413 40 2.17 0.51 0.68 0.76 0.79 

PCEM.O

. 

Multi-objective 

(maximizing Jsc, Voc and 

FF) 

0.45 2403 41 2.17 0.52 0.68 0.76 0.77 

PCEexp. 
27 points of 

experimental dataset 
0.5 2000 27 2.20 0.51 0.66 0.74 1.37 

 
Figure 3: Pareto front for multi-objective optimization aim at highest possible values for y1 to y3. 
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A remarkable result to emerge from Table 2 and in 

agreement with correlation in Figure 2 C, is come from 

comparing the PCES.O. and PCEp. Training ANN with 

Jsc, Voc, and FF as outputs is important for both: 1) 

delivering the sensitivities as far as machine learning 

concerns. More details on this will be given in the next 

section, and 2) learning the trend of these parameters to 

variations of inputs. More details on this topic will 

disclose in our upcoming article [68]. Consequently, 

while the individual optimization of the Jsc, Voc, and FF 

is important, the close result from trained ANN with 

PCE is beneficial for supervising the reliability of 

trained neural networks to make sure that they are not 

over-fitted and not learned the noises. On the other 

hand, in case of training larger databases, training the 

model by PCE is significant when some data points  

(Jsc , Voc or FF) are missed or for crosschecking the 

validity of imported data into the database by 

comparing the PCES.O. and PCEp. 

 

3.2. Sensitivity analysis 

The effect of each three input variables on the outputs 

can be described using sensitivity analysis [69]. Here 

we implemented the one-factor-at-a-time (OTA) 

method that means the extent of possible change of an 

output per one input, while keeping the other two 

inputs constant. A simple form of this test is computing 

the percentage of improvement of a specific response 

compared to the lowest result (base level) when 

sweeping one of the inputs. Keep in mind that while 

the continuous space of ANN model of responses let us 

sweeping the variables in fine mesh grids, in the full 

factorial experimental design where the levels of each 

variable are limited (there are only three levels in this 

case), such this analysis will result in rough outcomes. 

In a preliminary study of results, the most obvious 

point is the Voc, which takes a much lower effect by the 

three inputs (Figure 4). It is in agreement with the 

theory stating that the Voc is mainly a function of 

electronic states of active layer materials (donor and 

acceptor). 

While this figure demonstrates an estimate of the 

ultimate potential of each input to improve the value of 

outputs, but it cannot address the direction of these 

variations. A sensitivity analysis for the purpose of 

BHJ should deliver meaningful insight into the 

capability of changing film casting parameters to make 

either positive (+) or negative (-) influences on 

efficiency. Moreover, it is sensible to choose the 

mildest film casting conditions as base levels or 

reference. Moving base level from minimum output 

value to the mildest condition will make a distinction 

between positive and negative impacts. In view of 

machine learning and using this parameter in screening 

practices, the sensitivity of outputs e.g. PCE to inputs 

of different natures (temperature, time, rate, etc.) needs 

to be dimensionless. Equation 5 employed as a 

sensitivity analysis in this study. 

 

 
 

Figure 4: Sensitivity of responses to the input variables. 

 

 



 A. Ashtiani Abdi et al.  

114  Prog. Color Colorants Coat. 12 (2019), 107-120  

Sensitivity � 	
�����
�	 !	�"�
��	�
	 �����

�����
�	 !�"�
��	�
	�
���	
�

#$%#&

#&
'$%'&

'&

 (5) 

 

The base levels for inputs (x0) are chosen to be the 

lowest spin rate of spin coater, lowest temperature for 

post-annealing and lowest donor content. The reference 

values for outputs (y0) are corresponding response to 

the x0. Whilst the sign of the denominator in equation 5 

is always positive, as all the xi values are greater than 

the base level and the percent of change in output. 

Therefore, the sign of sensitivity can be positive or 

negative. In this way, two surfaces for positive and 

negative sensitivity can be obtained in a 3-dimensional 

space of sensitivity of an output (Jsc, Voc, FF, PCEs.o. 

and PCEp) to the variation of one of the inputs (z-axis), 

and the other two inputs as x and y-axis. 

Figure 5 shows sensitivities for PCEp to the inputs. 

By the first glances at Figure 5, it is obvious that span 

of improvement of PCE by optimizing the spin rate and 

annealing temperature is not as wide as the positive 

impact of changing donor content. 

The individual outcomes of sensitivity analysis can 

be interpreted visually from box-and-whisker plots [70] 

in Figure 6. This kind of plot together with data point’s 

presentation is useful to distinguish distributions of 

data points and visually judge about outliers data in 

datasets. As expected, broad span of sensitivities in 

Figure 6 A demonstrate that the donor:acceptor ratio is 

the most influential parameter in optimization of PCE. 

It is apparent from Figure 6 B that for this specific BHJ 

cell, increasing the spin rate during casting film of 

active layer on the substrate will not put any negative 

impact on the final cell functions. Figure 6 C shows a 

clear controversial trend in sensitivities of Jsc/FF and 

Voc by increasing annealing temperature. Correlations 

between positive and negative sensitivity of 

PCEp/PCEs.o. and Jsc and FF is in accordance with 

Figure 4 and confirms the synergic governing effect of 

Jsc and FF on PCE. 

 

 

Figure 5:  3-dimensional surfaces of positive and negative sensitivities of PCE to donor:acceptor ratio (A), spin rate (B) 

and annealing temperature (C). The color bar is denoting sensitivity level. 

B 

C 

A 
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Figure 6: Box plots together with the data point’s presentation of sensitivities. Upper and lower bounds of boxes and the 

vertical line inside the boxes are locating 75%, 25% and median of data respectively. The small square is the mean 

value. The whiskers are the lines extended from the quartiles to 0.5% and 95% of data. The star points are the lowest 

and highest values in the data points. 

 

B 

C 

A 
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Figure 7: Bar diagram of the mean, extremum, and ratio of sensitivities. (+) means the increase in output values and (-) 

means the decreasing in output values when increasing the input values. Ratios of mean values are positive/negative 

with plus sign and negative/positive with minus sign. 

 

Figure 7 shows the three parameters that can be 

employed to compare the parameters regarding their 

impacts on outputs; average, extremum (maximum for 

positive sensitivity, minimum for negative sensitivity) 

and positive:negative ratio. The latter parameter is 

calculated in a way to show the direction of the overall 

impact. That is absolute value of (positive sensitivity 

/negative sensitivity)n which n is 1 when the positive 

effect is more than negative effect and n is -1 and the 

sign of ratio is set to be negative. 

Returning to the question posed at the beginning of 

this study, it is now possible for machine to address 

questions like ‘which factor is the most influencing one 

to improve the PCE?’ by sorting the sensitivities to the 

input variables. Despite the simplicity of delivering 

sensitivity analysis by OAT, but in case of J-V results of 

photovoltaics, there are interactions between Jsc, Voc, and 

FF. In other words, positive sensitivity in one of them 

does not mean positive sensitivity of efficiency. 

Therefore, it is needed to take the PCE as the sole 

parameter for screening the input variables. Accordingly, 

for the cells with donor molecules with structures similar 

to BT(TDPPEHTTTC6)2 and PC71BM as acceptor, it is 

possible to attach ‘tag’s like these to the designed DPP-

BT structure: 

- Unlike normal expectations, post thermal 

annealing the cells will deteriorate the efficiency. 

- Focus on changing the donor to acceptor ratio. 

However, be cautious, it is a double-edged sword. 

Changing the donor:acceptor ratio at some points will 

show great positive impacts (greatest between all three 

input variables) on PCE, but it also can show equally 

same great negative impacts. 

- Feel free to increase the spin rate. Higher spin 

rates during casting active layer by spin coater will 

have a safe increasing effect on the cell efficiency. 

Although the simple ranking of the sensitivity 

parameters could easily deliver conclusions on the 

importance of the input variables, for the bigger 

datasets it is needed to employ more efficient decision-

making techniques [71]. 

 
4. Concluding remarks 

The artificial intelligence study in this work showed 

the hybrid ANN-GA as a reliable model to evaluate the 

trend of BHJ working factors (Jsc, FF, Voc, and PCE) by 

changing the cell fabrication parameters. We showed 

how to deliver an exact sensitivity analysis by 

interpolating in a three-dimensional space of discrete 

points of experimental data limited to three levels of 

three variables. The model architecture has shown a 

decent performance to predict the complex behavior of 

a BHJ efficiency. 

However, the very important outcome of this study 

is showing the capabilities of AI techniques in 

examining device aspects of organic electronics. In this 

regard, we suggest the next directions towards 

completing the puzzle of addressing the device 

considerations in organic photovoltaics: 
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- The first of first step is to construct a thorough 

database of experimental database including all the 

aspects of device recipe manufacturing variables and 

resulting device related characteristics. This database 

will be bigger and more comprehensive compared with 

the current databases [72, 73]. 

- By the concept of molecular fingerprint or other 

machine-readable parameters, it is possible to split the 

data based on their similarities. There are valuable 

manuscripts to read about it [53, 74]. 

- Then it is time to use the ANN/GA model of this 

study to train the model by the data from the database. 

- Finally, it is time to import the proposed data from 

HTS studies [72, 75]. The model is ready to deliver the 

comprehensive information around the device 

manufacturing operations, sorting by the final price, 

ease of synthesis, sensitivity of PCE. 

This is not the end. Tagging and classification the 

molecules with their sensitivities to different variables 

will provide new information about the relations 

between molecular structures and interactions within 

the active layers that is leading to specific nano-scale 

patterns. Hence, such study will make a big step toward 

the ultimate goal to quantitative prediction of organic 

photovoltaic efficiencies rather than only generate 

synthetic suggestions. 
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