Anticorrosive Performance of Polyester–melamine Coating Fortified with Zinc Ferrite Nanoparticles

Document Type : Original Article


1 Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, Tehran, Iran

2 Surface Coatings and Corrosion Department, Institute for Color Science and Technology, Tehran, Iran

3 Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran


In this study, nanoparticle zinc ferrites with different particle sizes were synthesized via sol-gel method using ferric nitrate and zinc nitrate. The obtained gel was dried and calcined at three different temperatures (i.e. 500, 600 and 800 °C) for 2 h. Adequate amounts of the as-synthesized nanoparticle samples were then added to the mixture of polyester resin and formaldehyde resin. The obtained mixtures were applied on the surface of mild steel specimens, and then the corrosion behavior of the coated mild steel was studied by electrochemical impedance spectroscopy and salt spray. In addition, mechanical and thermal properties of the coating were evaluated using dynamic mechanical thermal analysis. The crystalline and chemical structures of the coatings were investigated using X–ray diffraction analysis and infrared spectroscopy, respectively. The results showed that not only the incorporation of nanoparticle zinc ferrites in the coating has no negative effects on curing, but also increased corrosion protective performance and mechanical properties of the coatings.


M. C. Whitten, C. T. Lin, Coating performance of Polyester−melamine enamels catalyzed by an in situ phosphatizing reagent on aluminum, Industrial  Eng. Chem. Res., 38(1999), 3903-3910.
M. Mahdavian, S. Ashhari, Mercapto functional azole compounds as organic corrosion inhibitors in a polyester-melamine coating, Prog. Org. Coat., 68(2010), 259-264.
V. Floch, Y. Doleyres, S. Amand, M. Aufray, N. Pébère, D. Verchère, Adherence measurements and corrosion resistance in primer/Hot-Dip galvanized steel systems, J. Adhesion, 89(2013), 339-357.
R. B. Mester, A. Steffens, Method for the corrosion-inhibiting coating of metal surfaces using phosphorus-containing polyester, Google Patents, 2013.
O. D. Lewis, G. W. Critchlow, G. D. Wilcox, A. deZeeuw, J. Sander, A study of the corrosion resistance of a waterborne acrylic coating modified with nano-sized titanium dioxide, Prog. Org. Coat., 73(2012), 88-94.
A. C. Bastos, M. G. S. Ferreira, A. M. Simões, Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc, Prog. Org. Coat., 52(2005), 339-350.
I. M. Zin, S. B. Lyon, V. I. Pokhmurskii, Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture, Corr. Sci., 45(2003), 777-788.
V. I. Pokhmurs’kyi, I. M. Zin’, S. B. Lyon, Inhibition of corrosion by a mixture of nonchromate pigments in organic coatings on galvanized steel, Mater. Sci., 40(2004), 383-390.
J. J. Florio, D. J. Miller, Handbook of coating additives, Taylor and Francis, London, 2004, 50-55.
S. K. Dhoke, A. S. Khanna, Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings, Prog. Org. Coat., 74(2012), 92-99.
L. H. Yang, F. C. Liu, E. H. Han, Effects of P/B on the properties of anticorrosive coatings with different particle size, Prog. Org. Coa., 53(2005), 91-98.
K. S. Cho, J. I. Hong, C. I. Chung, Effects of ZnO nano particles on thermal stabilization of polymers, Poly. Eng. Sci., 44(2004), 1702-1706.
T. Xu, C. S. Xie, Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property, Prog. Org. Coat., 46(2003), 297-301.
M. J. Q. Wang, Y. F. Chen, Effects of nanosized iron oxide with different morphology on nanomechanical properties of nanocomposite coating, Key Eng. Mater., 336-338(2007), 2218-2220.
S. K. Dhoke, A. S. Khanna, Electrochemical behavior of nano-iron oxide modified alkyd based waterborne coatings, Mater. Chem. Phy., 117(2009), 550-556.
S. K. Dhoke, A. S. Khanna, T. J. M. Sinha, Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings, Prog. Org. Coat., 64(2009), 371-382.
B. Ramezanzadeh, M. M. Attar, M. Farzam, A study on the anticorrosion performance of the epoxy–polyamide nanocomposites containing ZnO nanoparticles, Prog. Org. Coat., 72(2011), 410-422.
X. Shi, T.A. Nguyen, Z. Suo, Y. Liu, R. Avci, Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating, Surf. Coat. Technol., 204(2009), 237-245.
O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri, Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa, Solid State Sci., 8 (2006), 1015-1022.
X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong, Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods, J. Alloy Compound, 648(2015), 1072-1075.
X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong, Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method, J. Magnetism Magnetic Mater., 405(2016), 36-41.
X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao, H. Zhu, Fabrication and electromagnetic loss properties of Fe3O4 nanofibers, J. Mater. Sci. Mater. Electron., 26(2015), 3474-3478.
Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou, X. Liu, Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles, Solid State Sci., 11(2009), 1319-1324.
B. R. V. Narasimhan, S. Kumar, T. S. N. Sankara Narayanan, Synthesis of manganese zinc ferrite using ferrous pickle liquor and pyrolusite ore, Environ. Chem. Lett., 9(2011), 243-250.
K. Tanaka, S. Nakashima, K. Fujita, K. Hirao, Large Faraday effect in a short wavelength range for disordered zinc ferrite thin films, J. Appl. Phys., 99(2006), 106103.
X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber, Mater. Lett., 124(2014), 126-128.
A. Kalendová, P. Ryšánek, K. Nechvílová, Investigation of the anticorrosion efficiency of ferrites Mg1−xZnxFe2O4 with different particle morphology and chemical composition in epoxy-ester resin-based coatings, Prog. Org. Coat., 86(2015), 147-163.
M. Z. Shoushtari, A. Emami, S. E. M. Ghahfarokhi, Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method, J. Magnetism Magnetic Mater., 419(2016), 572-579.
P. Fei, Q. Wang, M. Zhong, B. Su, Preparation and adsorption properties of enhanced magnetic zinc ferrite-reduced graphene oxide nanocomposites via a facile one-pot solvothermal method, J. Alloy Compoun. 685(2016), 411-417.
A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite, J Alloy Compound, 509(2011), 3917-3923.
F. Iqbal, M. I. A. Mutalib, M. S. Shaharun, M. khan, B. Abdullah, Synthesis of ZnFe2O4 Using sol-gel Method: Effect of Different Calcination Parameters, Proc. Eng., 148(2016), 787-794.
A. Kundu, S. Anand, H. C. Verma, A citrate process to synthesize nanocrystalline zinc ferrite from 7 to 23 nm crystallite size, Powder Technol., 132(2003), 131-136.
G. K. Williamson, W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurg. 1(1953), 22-31.
M. Thomas, K. C. George, Infrared and magnetic study of nanophase zinc ferrite Indian J. Pure Applied Phy. 47(2009), 81-86.
R. Raeisi Shahraki, M. Ebrahimi, Synthesize of Superparamagnetic Zinc ferrite nanoparticles at room temperature, J. Nanostructures, 2(2012), 413-416.
M. A. J. Batista, R. P. Moraes, J. C. S. Barbosa, P. C. Oliveira, A. M. Santos, Effect of the polyester chemical structure on the stability of polyester–melamine coatings when exposed to accelerated weathering, Prog. Org. Coat., 71(2011), 265-273.
M. Ehsani, H. Borsi, E. Gockenbach, J. Morshedian, G. R. Bakhshandeh, An investigation of dynamic mechanical, thermal, and electrical properties of housing materials for outdoor polymeric insulators, Euro. Poly. J., 40(2004), 2495-2503.
Z. W. Wicks, F. N. Jones, S. P. Pappas, D. A. Wicks, Organic coatings: science and technology, Wiley, New York, 2007, 117-120.
A. Kalendová, D. Veselý, Needle‐shaped anticorrosion pigments based on the ferrites of zinc, calcium and magnesium, Anti-Corr. Methods Mater., 54(2007), 3-15.
B. Ramezanzadeh, M. M. Attar, An evaluation of the corrosion resistance and adhesion properties of an epoxy-nanocomposite on a hot-dip galvanized steel (HDG) treated by different kinds of conversion coatings, Surface Coat. Technol., 205(2011), 4649-4657.
M. Mahdavian, M. M. Attar, The effect of benzimidazole and zinc acetylacetonate mixture on cathodic disbonding of epoxy coated mild steel, Prog. Org. Coat., 66(2009), 137-140.
Y. Zhao, J. Wang, X. Cui, H. Wang, The use of Photoshop software to estimate the adhesion and rust-resistant properties of coating film, Surf. Interfac. Anal., 43(2011), 913-917.