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arvesting the energy from the sun through the bulk heterojunction 

(BHJ) solar cells need materials with specific electronic 

characteristics. However, any promising material if cast improperly in 

cells will end into low or even null power conversion efficiency (PCE). Cell 

casting optimization is a time/material consumable step in any photovoltaic 

manufacturing practice. In this study, we showed that how the artificial 

intelligence (AI) could help to find optimum values of device preparation 

variables. For this purpose, an in-house code will catch the input variables 

(donor: acceptor ratio, spin casting rate, annealing temperature); learn the 

trends by the hybrid artificial neural network (ANN), genetic algorithm (GA) and 

optimize the output results simultaneously. The results showed that ANN/GA is 

capable to learn the trends of relatively small size dataset without over-fitting. 

This study highlights that how implementing the suggested AI model can help to 

learn more information and find the optimum recipe from less number of 

experiments with the highest precision. Prog. Color Colorants Coat. 12 (2019), 1-

14© Institute for Color Science and Technology. 
 

 

  

  

  

  

  

1. Introduction 

Harvesting energy from renewable sources has become 

an important topic in the last few decades following 

escalating environmental concerns [1]. Meanwhile, 

emerging of organic solar cells (OSC) has caught eyes 

of researchers and industry hopping to find a solution 

for low cost and bulk production of solar cells [2]. 

Very recently, a generation of OSCs known as bulk 

heterojunction (BHJ) solar cells showed specific 

desirable characteristics like lightweight, flexibility, 

print or role-to-role application and low-cost 

production in addition to promising efficiency [3, 4]. 

Just like any solar cell technology, BHJ architecture 

consists of several stacked layers with different roles in 

the mechanism of converting energy from solar 

radiation to electricity. However, the active layer of 

BHJ composes of an inhomogeneous mixture of at 

least two organic materials that absorb photons, 

produce electron-hole pairs (exciton), dissociate it to 

charge carriers and conduct the carries to be finally 

collected at the electrodes [5]. It is important to 

construct an active layer with nano-scale morphology 

in accordance with the lifetime of excitons. Knowing 

the fact that there is no perceptible instruction to 

H 
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control this morphology, the experimental optimization 

of the cells became an extensive time and material-

consuming step in any BHJ investigation [6, 7].  

Therefore, the heterogeneous nature of the active 

layer adds more complexity in BHJ compared with 

other types of solar cells. Nevertheless, when it comes 

to complexity, the artificial intelligence (AI) is 

definitely the best solution to deal with the problem. 

Despite the recent developments in integration of AI in 

the field of organic electronics, they mainly emphasize 

on the design aspects of organic molecules [8-13] and 

far too little attention has been paid to address the 

device considerations [14]. 

The present paper aims to investigate the capability 

of AI for learning the trend of working parameters of 

solar cells (J, V, FF, PCE) as the output of the model 

by changing the cell casting variables (input) from a 

limited number of experimental data points. After 

solving the problem of model overfitting on relatively 

small datasets, it will be possible to ask the model for 

adjusting the variables to find the best possible cell 

performance and deliver the clear understandings of the 

individual influence of each changing variables on the 

resulting parameters. 

To seek for addressing the mentioned question, we 

developed an in-house artificial neural network (ANN) 

code with genetic algorithm (GA) for multi-objective 

optimization of inputs. A dataset of experimental data 

of BHJ cells was picked with three essential casting 

parameters; donor to acceptor ratio, thermal annealing 

temperature and spin rate of spin coater. The aspects of 

the model, further discussions about the successful 

modeling of the data and clarifying the relationships 

between distinct input-output are also dealt with in 

more detail in next sections. 

 

2. Model Development 

2.1. Individual optimization  

Modeling with ANN involves training and test 

procedures, whereby weights and thresholds (biases) 

will be systematically manipulated to minimize the 

prediction error. Accordingly, the developed network 

learns the behavior of the process. The error occurring 

during the network configuration can be controlled by 

adaptation of a set of data as the training datasets for 

the network. Then, the outputs will be controlled and 

tuned by the model comparing the actual (target) 

experimental values with those proposed by the model 

until reaching the desired minimum error. Upon 

completion of training, the educated ANN enables 

prediction of the rest of the dataset. 

A dataset of 27 data points (scenario) is picked for 

training the model [15]. The Inputs are annealing 

temperature (x1), the donor (BT(TDPPEHTTTC6)2) to 

acceptor (PC71BM) ratio, which is  changed to donor 

content (x2), and the rotation rate of spin coater (x3), 

each in 3 levels. The outputs are short-circuit current 

density, Jsc, (y1), open circuit voltage, Voc(y2), fill 

factor, FF (y3), and power conversion efficiency; PCE 

(y4). The donor component of the active layer in BHJ 

devices is of a DPP backbone that is similar to the 

DPP-BT structures which we designed recently [16].  

To construct ANN models for predicting y1 to y4, 

the data were randomly separated into two sets. In one 

set, nineteen scenarios were selected out of overall 

twenty-seven scenarios to train the network, and in the 

other set, the remaining eight scenarios were used to 

test the reliability of each ANN. This process was 

repeated until the desired degree of error was achieved. 

There are some difficulties associated with 

choosing the ANN architecture; hence, the number of 

layers and neurons of each one for a given problem 

should be selected cautiously.  Nonetheless, the 

complexity of the problem is a function of the extent to 

which the programmer is acquainted with the nature of 

the manufacturing process. 

Basically, there is no standard for choosing and 

implementing the architecture for ANN, and the 

number of layers and neurons for a problem depends 

on the difference between the number of input and 

output variables [17, 18]. In general, the nature of the 

manufacturing process is not known, but for such 

complex systems, the professional developed computer 

code, instead of using simplified versions of ANN or 

GAs as software packages, can learn it as far as 

possible [19]. 

The ANN models were trained individually by 

feeding the first random set of data in each case, which 

were not essentially the same. Then, the biases and 

weights of interconnections among the neurons were 

manipulated by the code until reaching the desired 

error level. The ANNs were then tested against the 

remaining data, i.e. test dataset. The activating function 

in this study is a hyperbolic tangent sigmoid (Eq. 1). 
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Implementing GA brings the optimization 

capability to the model. The weights and biases of the 

ANN model act as chromosomes of the GA optimizer. 

The structure of the defined chromosome is illustrated 

in Figure 1. Unknown parameters of the network were 

291 coded as a chromosome composed of 291 

components or genes. The initial 246 genes in this 

chromosome are representative of the unknown 

weights of the ANN, while the remaining of 45 genes 

are those dedicated to the unknown biases, which are 

placed correspondingly one after another from left to 

right in the defined chromosome. 

To optimize parameters of the model, a population 

of 50 chromosomes is randomly generated and the 

information of each chromosome, e.g. chromosome 

number j, is independently situated into the predefined 

ANN structure. The network in each case was 

evaluated with respect to the weights and biases 

dictated by the assigned chromosome.  

The validity of the model was confirmed by 

assessing the predicted values proposed by ANN 

through statistical criteria defined in Eq. 2 and 3: 
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where MSE is the mean of the squared error and 

yi,predicted and yi,target are the output of the model and the 

experimental target, respectively. Moreover, N is 

representative of the number of data used for training, 

and Max (Error) is the maximum network error. To 

minimize the MSE, the chromosomes were sorted 

considering their MSEs. Then, selection, mating, 

crossover, and mutation operators were applied to the 

population and the optimization process continued until 

the desired chromosome was obtained. The mating 

operator couples the rest of the chromosomes as 

dictated by the roulette wheel selection mechanism 

[20]. The mating operator was put into the creation of 

child chromosomes after parent chromosomes 

experienced crossover. In the next step, the mutation 

operator randomly selected one gene out of the gene 

pool and exchanged its value stochastically. The 

flowchart of the modeling process is shown in Figure 

2. In the current section, single-objective optimization 

part of our code is described. The multi-objective 

optimization illustrated in the sketch will be explained 

in the following section.   

We used Lazarus IDE and FPC 2.6.2 packages for 

programming and compiling the in-house ANN/GA 

code running on windows 7 operating system with Intel 

Core i7-3770K (3.50 GHz) processor and 32 GB of 

memory (2133 MHz). 

 

2.2. Multi-objective optimization 

In the previous section, individual optimization of each 

response was carried out leading to the construction of 

four optimized ANN models. In a practical case, it is 

essential to identify the best input levels aimed at 

reaching the optimum values of the outputs at the same 

time. 

In general, Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) [21-23] determines the 

optimum values of the variables and encodes them so 

that each chromosome has n genes proportional to the 

number of input variables. As previously noted, inputs 

include 3 parameters, which are annealing temperature, 

donor content, and spin rate. GA algorithm 

simultaneously adjusts Jsc, Voc, and FF criteria. 

The initial population of the mentioned 

chromosomes is produced to initiate the process of 

genetic evolution algorithm optimization method. For 

the production of chromosomes, the value for each 

gene is randomly selected. Following the generation of 

the initial population, it is required to measure 

goodness-of-fit value for each chromosome as it 

represents a recipe scenario to produce a BHJ module. 

It is definitely apparent that maximizing all the 3 

outputs would be the desirable target to reach the 

utmost PCE value. 

 

 
Figure 1: Structures of defined chromosomes. 
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Figure 2: Flowchart of single and multi-objective ANN/GA hybrid model. 

 

 

To determine the fitness of any selected 

chromosome and to properly sort the chromosomes 

from favorable to unfavorable, the non-dominated 

sorting genetic algorithm was applied. Accordingly, it 

is crucial to arrange the rank and quality of 

chromosomes. The quality is a primary criterion due to 

its remarkable significance in sorting chromosomes. By 

considering this criterion, all chromosomes are 

mutually compared with each other while the 

dominated one attains a negative rating.  

Any given chromosome i prevails the chromosome 

j, if its value is one unit higher or equal to chromosome 

j. 

In order to calculate each of the objective functions, 

a neural network associated with the function being 

created in the first phase can be employed. That is, for 

each chromosome, all final optimal ANNs are recalled 

individually. Moreover, the outputs that are target 

functions for chromosome I are calculated per inputs 

which are the same genes of chromosome i. 

After comparing each pair of chromosomes, the 

chromosomes not predominated even once are isolated 

from the rest of the chromosomes and classified as the 

first Pareto front [24]. This procedure is repeated for 

other chromosomes to determine Pareto fronts 2, 3, etc. 

Obviously, Pareto front number n is related to the 

chromosomes that have been beaten (n-1) times. 

Afterward, a secondary criterion, which refers to the 

crowding distance of chromosomes in each Pareto 

front, can be used for sorting. To address this, after 

arranging each objective, the errors in the prediction of 

each response were specified and the multi-objective 

optimization was validated based on achieving the 

minimum value of the overall error, i.e. the sum of 

errors in the prediction of each response when they are 

adjusted simultaneously [25]. 

After calculating the degree of fitness based on the 

primary and secondary criteria, entire chromosomes are 
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sorted from the most favorable to the least favorable 

ones. Apparently, the best chromosomes are related to 

the first Pareto front, which have the least amount of 

the target functions. Accordingly, selecting, pairing, 

reproducing and mutating are carried out and parents as 

well as children of the new generation are taken to re-

evaluate the fitness, again based on the non-dominated 

sorting algorithm. In Table 1, the values of various 

parameters used in the BHJ cell functions optimization 

with evolutionary algorithm NSGA-II are listed. 

The condition for the completion of optimization 

process is set at 20,000 iterates. The module of multi-

objective optimization has been already provided in 

Figure 2.  This module contains an efficient computer 

code, which is able to recall optimal ANNs trained in 

the first phase of modeling and implements the GAs 

algorithm based on multi-objective optimization 

process. 

 

3. Results and Discussion 

3.1. Modeling the BHJ functions by GA-based 

ANN approach 

As noted in the previous section, the model will seek 

among the training-test dataset combinations to reach 

the lowest MSE error during the training phase. Figure 

3 shows the variation of MSEs related to the best 

arrangement (chromosome) in the training phase of the 

network. On the basis of the admitted number of 

epochs and very low final error, the behavior of outputs 

with regard to the selected inputs are satisfactorily 

predictable by the model. 

 

Table 1: The second phase of the algorithm parameters to optimize multi-objective evolutionary genetics. 

Optimization Parameter Value 

Initial population size 100 

Selection Mechanism Ternary Tournament Selection 

Mating Mechanism Roulette wheel selection 

Crossover Mechanism Single-point crossover 

Mutation rate 15% 

 

 
Figure 3: Training error of the responding variables (y) which reaches to 1% during ANN model optimization iterations. 
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By comparing the predicted and target values of 

each response, the performance of the ANN can be 

further examined. Figure 4 compares the experimental 

and model values. The plots put stress on the fact that 

the ANNs developed for each prediction of each 

response appropriately match with the experimental 

pattern. The results in Figure 4 show that the ANN can 

predict the experimental target values at high 

acceptable accuracy. 

The precision of the network which is trained by 

the experimental data is illustrated from another 

standpoint in Figure 5. The vicinity of data point to the 

ideal y=x line suggests an accurate prediction model 

which is rooted in the synergic effect of both ANN and 

GA.  

 

3.2. Visualization the particular impact of 

inputs on the responses 

A number of studies have been made to reflect the 

impact of cell manufacturing parameters on the cell 

functions in the fashion of mathematical elucidation 

[26-34]. Herein, to demonstrate the complex and, 

somehow, controversial nature of such an important 

issue, the capabilities of artificial intelligence are 

investigated. To address this objective, the model 

outputs are treated and interpreted in this section. 

Figure 6 shows the behavior of Jsc (y1) predicted by 

the model versus three input variables. Subplot-A 

demonstrates Jsc values between 1.2 to 2.2 mA.cm
-2 

by 

color and size in a three-dimensional space of donor 

content (0.3 to 0.7), spin rate (1000 to 4000 rpm) and 

annealing temperature (as-cast in room temperature to 

110 °C). The bigger balls are representative of recipes, 

which will result in higher Jsc. This plot illustrates that 

the annealing has an improper effect on the Jsc. Then, 

the best condition to get higher Jsc values will be 

achieved by the donor to acceptor ratios around 40:60 

(donor content 0.4), mild film casting rate of 2000 rpm 

and employing the cell as cast. 

To examine the effect of each individual input on 

the Jsc, it is useful to draw the surfaces of output by two 

of the inputs at a specific value of the third input. 

Figure 6-B demonstrates the effect of donor content 

and spin coating rate on Jsc of an as-cast active layer. 

The plot shows that while the donor content has a 

dominant effect on Jsc, the casting spin rate has a minor 

effect on increasing the Jsc. 

 

 
Figure 4: Experimental targets versus ANN prediction values. 
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Figure 5: Comparison of the experimental data and the ANN model outputs. 

 

According to Figure 6-C, when the Jsc is plotted 

versus donor content and annealing temperature at the 

spin rate of 2000 rpm, the same limited effect of 

annealing temperature on Jsc as that of the spin rate can 

be seen. According to both B and C plots in Figure 6, the 

Jsc of a cell falls dramatically when the donor share is 

more than acceptor (higher than 0.5). In other words, Jsc 

has influenced mainly by donor content than the 

annealing while the spin rate is 2000 rpm or casting 

speed variation of an un-annealed film. At higher donor 

ratios, e.g. 70:30, the Jsc is more sensitive to the film 

casting rate and annealing, in such a way that increasing 

both of the inputs will deteriorate Jsc (Figure 6-D). 

However, once choosing the optimum donor 

content as shown in Figure 6-E, the level of Jsc is 

generally high and further improvements can be 

achieved by the vicinity the spin rate in the vicinity of 

2000 rpm. This observation suggests that for the 

chosen donor and acceptor compounds, optimizing the 

donor to acceptor ratio, independent of annealing or the 

rate of the film casting condition, is at the highest 

degree of importance. 

Unlike the Jsc, fill factor is highly influenced by 

physical film-forming parameters, annealing 

temperature, and spin coating rate as well as donor 

content. Both the plots B and C in Figure 7 show 

similar sensitive reductive trends by increasing 

temperature and spin rate. For both the mentioned 

situations, the optimum D/A range to reach a high FF is 

narrow the same for Jsc. Consequently, the domain of 

high-FF zone is not noticeably broad due to its 

sensitivity to more parameters. Specifically, there is no 

need for annealing or increasing the spin rate.  

The value of Jsc relates to the number of photons 

absorbed within the active layer, hence it can be 

suppressed by imperfect charge separation and charge 

collection. FF is determined by the competition 

between the photo-generation and recombination of 

charge carriers to the ground state [26]. As expected, 

our modeling demonstrates that both Jsc and FF are 

directly governed by the quality of nanoscale 

heterojunction net construction of active layer [35, 36]. 
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Figure 6: Three-dimensional plots predicted from the ANN model representing the effect of donor content, annealing and 

spin rate of film casting on Jsc. 
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Figure 7: Three-dimensional plots predicted from the ANN model representing the effect of donor content, annealing and 

spin rate of film casting on FF. 

 

The trend of input parameter variations on the Voc 

is shown in. Compared with Jsc and FF, the surfaces of 

Voc change wavy and without meaningful trend. The 

non-smooth dependent functionality of Voc of physical 

film formation parameters and composition of the 

active layer is to some extent a proof for the claim that 

Voc mainly depends on the intrinsic molecular energy 

levels of donor and its acceptor counterpart [37, 38]. 

Anyway, independent behavior does not mean the 

absence of any relation. It is reported that donor 

content, and so the extent of interfacial area between 

specific donor-acceptor mixture, will alter the Voc 

value [39], Figure 8, B and C reveals the similar 

picture too. According to Figure 8, D, Voc is rising with 

temperature. The same trend is slightly observed for 

higher spin rates. Hence, according to the results, the 

model depicts that more studies are needed in 

connection with film casting conditions, especially 
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annealing condition and film casting rate Voc. 

Theoretically, Voc is considered to be correlated 

with the energy gap between the HOMO of the donor 

and the LUMO of the acceptor in BHJ structure with a 

margin of different kinds of losses [38]. Then, it is 

common to confine the Voc in a chemical vale with 

some assumptions which may suggest simplifications 

of theories [37]. However, illustrations in this study 

support the findings in a number of reports about the 

dependency of Voc on different casting conditions like 

temperature, light intensity, nano-morphology, the 

balance between charge separation and recombination, 

the energy of emissive charge-transfer (CT) states, and 

energetic disorder [40, 41]. 
 

 

Figure 8: Three-dimensional plots predicted from the ANN model representing the effect of Donor content, annealing 

and spin rate on Voc. 
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The last sets of illustration highlighted the true 

behavior of working parameters of the PV system (Jsc, 

Voc, and FF) against variation of the individual input 

parameter. However, they showed that gaining Jsc and 

FF means a reduction in Voc. Therefor, it is not possible 

to directly deduce the best recipe for highest PCE. 

Figure 9 demonstrates the result of the last output (PCE) 

optimization. Comparing the first sub-figures in Figure 9 

and Figure 6 shows that the suggested regions for 

maximizing PCE and Jsc are identical. Figure 9-B to 9-E 

are also consistent with the respective sub-figures in 

Figure 6. This means a strong synergistic governing 

effect of Jsc and FF (Figure 7-A) on the final efficiency.  

The visually derived aforementioned results closely 

match those obtained by multi-objective modeling. The 

proposed ANN/GA multi-criteria optimization with the 

dictated criteria for maximizing all the three outputs 

(Jsc, Voc, and FF) delivers the PCE 0.76 for optimum 

donor content of 0.45, the annealing temperature of  

41 °C and spin rate of 2403 rpm. 
 

 

 

 
Figure 9: Three-dimensional plots predicted from the ANN model representing the effect of donor content, annealing and 

spin rate on PCE. 
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4. Conclusion 

The present study was designed to determine the 

capability of AI technics in modeling the BHJ solar cell 

casting parameters. In case of successful integration of 

our suggested ANN/GA hybrid model, it would end in 

decreasing the number of experiments needed to 

optimize the BHJs during cell casting practices and 

delivering brighter deduction of the individual impacts 

of the input variables on the working parameters. 

The model has been constructed on the basis of 27 

experimental scenarios by variation of donor content, 

annealing temperature and film casting spin rate of 

BHJ cells (each variable in 3 levels) with a single 

junction BT(TDPPEHTTTC6)2:PC71BM BHJ. Results 

showed successful convergence during the training 

process, and the low difference between the error of 

training and test steps concedes the capability of the 

proposed code to learn the trends from the limited 

number of data without overfitting. 

Moreover, the current findings add substantially to 

our understanding on the impact of cell functionalities 

and specific variable range to obtain the higher cell 

working parameters. For the interested DPP-BT based 

donor molecule,the challenge of modifying PCE is 

easier at the higher levels of Jsc. While the same 

variation trend was observed for the Jsc, and FF value 

by changing the aforesaid manufacturing parameters, 

this model declared that the trends of Voc and Jsc are in 

an opposite direction but with a mild sloop. This 

finding supports the scheme that Voc indirectly depends 

on bulk characteristics while Jsc and FF are closely 

dependent on the morphology of the active layer and 

device characteristics. Based on the stated outcomes, 

this research provides a powerful methodology to help 

the researchers in the field of organic electronics to 

learn sufficient data from less experiment. This 

investigation, as a significant progress, can be 

considered for many other cell manufacturing variables 

(such as cell thickness and heating rate during the 

annealing process) which affect final PCE 

performance. 
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