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 uantitative structure-retention relationships (QSRRs) are used to correlate 

paper chromatographic retention factors of disperse dyes with theoretical 

molecular descriptors. A data set of 23 compounds with known RF values 

was used. The genetic algorithm-multiple linear regression analysis (GA-MLR) 

with three selected theoretical descriptors was obtained. The stability and 

predictability of the model was validated by use of leave-one-out (LOO), leave-

many-out (LMO) cross-validation, external validation, Y-randomization and 

applicability domain (AD) analysis. The GA-MLR revealed a statistically 

meaningful model showing the dependence of the RF value on sum of topological 

distances between N and Br atoms (T(N..Br)), global topological charge index 

(JGT) and R autocorrelation of lag 5 / unweighted (R5u_A) of the compounds. 

Prog. Color Colorants Coat. 9 (2016), 195-206© Institute for Color Science and 
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1. Introduction 

The rapid increase in the manufacture and consumption 

of synthetic dyes during the past century has been quite 

phenomenal. There are more than 10,000 commercially 

available dyes and it is estimated that more than 7 × 

10
5
 tonnes of dyestuffs are produced per year [1]. At 

the present time nearly all industrial fields such as 

textiles, paper, rubber, plastics, dyestuffs, leather, ink, 

cosmetics, food, biomedicine, paint and varnishes are 

users of synthetic dyes [2-4]. They are also often added 

to a product to influence purchasing behaviors, but do 

not improve the product itself. The disposal of these 

dyes is an environmental concern because they are 

toxic to living organisms, they last for a long time in 

the ecosystem, cause allergies and skin or eye 

 
irritation, and are suspected human carcinogens [5-7]. 

On the other hand they are resistant against light and 

microbial attach. Therefore, as persistent organic 

compounds, synthetic dyes are not readily degradable 

and are typically not easily removable from water by 

conventional treatment methods. 

Disperse dyes are extensively used in the textile 

industry for dying polyester, cellulose acetate and 

triacetate, polyamide, polylactide and acrylic fiber. 

More than 50% of disperse dyes are simple azo 

compounds, about 25% are anthraquinones and the rest 

are methine, nitro or naphthoquinone dyes [8]. The 

modeling of disperse dyes behavior has been studied 

by several authors. Oprea et al. proposed a model using 

Q 
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quantitative structure-activity relationship method 

correlating disperse azo dyes affinity to cellulose fiber 

with variations in the chemical structure. Based on 

their study, long linear structures and substituents that 

maintain linearity are favored [9]. Hatch and Magee 

proposed a discriminant model for allergic contact 

dermatitis to anthraquinone disperse dyes. By using 

quantum chemical descriptors, they have shown that 

electrophilic reactivity of the anthraquinone disperse 

dyes is most unlikely and that some form of activation 

by electron transfer or photopromotion is responsible 

for protein reactivity and sensitization [10]. 

Although modern chromatographic methods along 

with modern data acquisition systems are well 

developed in chemical analysis [11, 12], a considerable 

section of the official methods of analysis still relies on 

paper chromatography (PC) [13]. Strips of paper 

saturated with color forming reagents permit rapid, 

inexpensive urinalysis [14]. On the other hand, 

methods based on paper chromatography are still being 

used in different areas including phytochemistry [15], 

radioanalytical chemistry [16, 17], and food chemistry 

[18].  

PC is a powerful separation technique when considering 

cost, portability, flexibility in chromatographic system 

selection, speed, and extendibility in simultaneous parallel 

separations. In PC, excellent results are achievable with 

simple and inexpensive equipment. Advanced liquid 

chromatographic methods such as HPLC, suffer from 

limitations such as consumption of materials and time 

and the number of prior steps are often required to 

obtain the species of interest from the sample matrix. 

In this respect, PC is more satisfactory than HPLC. 

However, it is not possible to use PC in quantitative 

analysis, to the separation of complex mixtures and as 

a preparative technique. Furthermore, PC is the most 

analog method among chromatographic techniques. 

Like analog photography, in which the image is 

recorded as an analog on the film, in PC the separation 

is conducted on the strip or piece of paper. For efficient 

visualization of analytes, chemical reagents have been 

in use. Hazards associated with the use of particular 

visualization reagents, instability of visualization 

reagent and chromatogram after chemical or thermal 

treatment along with catalytic fading [19, 20] and 

hydrolysis of dyes [21], have stressed the need for the 

development of new methods in this field. 

Quantitative structure-retention relationship 

(QSRR) method was envisaged to reduce the 

disadvantages associated with above said 

chromatographic procedures. Although the application 

of QSRR in chromatography is rooted in early 

investigations conducted by Martin [22], this discipline 

is still in continuous development. While most 

developed QSRR models concern more sophisticated 

separation techniques such as gas chromatography 

(GC) [23], high performance liquid chromatography 

(HPLC) [24] supercritical fluid chromatography (SFC) 

[25] and capillary electrophoresis (CE) [26], the 

development of QSRR techniques in planar 

chromatographic methods especially paper 

chromatography have been progressed rather slowly 

because of the presence of a considerable time gap 

between the prosperity periods of paper 

chromatography (1960s) and quantitative structure-

retention relationships (after 1992). 

There are limited studies that have used QSRR 

models to study planar chromatographic behaviors of 

chemicals. It is, thus, important to understand the 

correlation of paper chromatographic retention 

behavior of disperse dyes with their structural features 

represented as molecular descriptors. Inspired by the 

pioneering work of Levy [27] and in the continuation 

of our earlier works [23-26, 28, 29] we have revisited 

the work of Levy [27] to see if we can further develop 

a significant QSRR model using GA-MLR procedure 

with statistically significant set of parameters. 

 

2. Experimental  

2.1. Data set 

The RF (retention factor) values of 23 disperse dyes as 

data set was chosen from the literature [30]. Please 

refer to Supplementary files section for details of the 

paper chromatographic conditions used for separation 

of dyes. The RF values were converted into the RM 

values using Bate-Smith and Westall equation [31]: 

 

RM = log [(1/RF) – 1)]                                      (1) 

 

Different types of disperse dyes belonging to six 

classes including nitrodiphenylamine, azo, disazo, 

methine, naphthalimide and anthraquinone are 

presented in data set (Table 1). This data set was 

randomly divided into two groups: a training set 

consisting of 18 molecules that was used for the model 

generation and a test set of 5 compounds which was 

used for the evaluation of the QSRR model. 
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Table 1: The chemical structures of the data set molecules. 

Classb CAS Registry No. C.I. No.a Structure Commercial name No. 

I 6373-69-9 10350 
N
H

Cl ONO
2

CH
3

 

Celliton fast yellow RR 

(Disperse orange 15) 
1 

II 2581-69-3 11080 
N

N N
H

O
2
N

 

Dispersol fast orange A 

(Disperse orange 1) 
2 

II 6232-56-0 11100 
N

ClO
2
N

Cl N

N

CH
3

CH
2
CH

2
OH

 

Celliton fast brown 3R 

(Disperse orange 5) 
3 

II 3769-58-2 11118 CH
2
CHOH

N

N

N

CH
2
CH

3

O
2
N

CH
2
OH  

Artisil fast scarlet GP 

(Disperse red 2) 
4 

II 6374-02-3 11195 CH
2
CH

2
OH

N

N

N

C
4
H

9
(n)

O
2
N

CH
3

NO
2

 

Celliton violet R 

(Disperse violet 13) 
5 

II 6374-03-4 11200 
N

N

N

CH
3

HOCH
2
CH

2

CH
3
CH

2
CH

2
CH

2

NO
2

O
2
N

Br

 

Celliton discharge violet B 

(Disperse violet 24) 
6 

II  11205 
N

N

N

O
2
N

CH
3

CH
2
CH

2
OH

C
4
H

9
(n)Br

OMe

NO
2  

Celliton discharge blue 3R 7 

II 3769-57-1 11215 N(CH
2
CH

2
OH)

2

N

N

O
2
N

CH
3

Cl  

Celliton fast rubine 3B 

(Disperse red 21) 
8 

II 6253-14-1 11225 CH
2
CH

2
OH

N

N

N

CH
2
CH

2
OH

O
2
N

CH
3

OH

 

Celliton discharge rubine BBF 

(Disperse Red 16) 
9 

II 6253-14-1 11250 NH
2

N

N

O
2
N

CH
3

OH

O-CH
3

 

Cibacetscarlet G 

(Disperse Red 31) 
10 

II 6486-13-1 11410 
N

N

O
2
N

Br

NO
2

CH
3

N

CH

CH
3

CH
2
CH

3

OH

 

Celliton discharge blue RRF 

(Disperse violet 7) 
11 

II 3738-04-3 11835 N

N

OH

OH

NHCOCH
3

O
2
N

O
2
N  

Celliton fast yellow G 

 
12 

II 4314-14-1 12700 
N

N
N

N
CH

O

CH
3  

Sudan yellow 3G 

(Disperse yellow 16) 
13 
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Table 1: Continued. 

Class(a) CAS Registry No. 
C.I. 

No. 
Structure Commercial name No. 

II 8805-71-8 12795 
N

N
N

O

O
2
N

OH

CH
3  

Celliton yellow 3GN 

(Disperse yellow 10) 
14 

III 6300-37-4 26090 
N

N

N

N OH

CH
3  

Celliton fast yellow 5R 

(Disperse yellow 7) 
15 

IV 4361-84-6 48000 
C
H

COOC
2
H

5

ClCH
2
CH

2

H
3
CH

2
CH

2
CH

2
C

NC  

Celliton fast yellow 7G “F” 

(Disperse yellow 31) 
16 

V 2478-20-8 56200 N CH
3

CH
3O

O

NH
2

 

Celliton brilliant yellow FFA-CF 

(Disperse yellow 11) 
17 

VI 3688-79-7 58900 

O

OMe

 

Duranol brilliant yellow 6G 

(Disperse yellow 13) 
18 

VI 82-38-2 60505 

O

O N
CH

3
H

 

Celliton pink R 

(Disperse red 9) 
19 

VI 82-28-0 60700 

O

O NH
2

CH
3

 

Celliton orange R 

(Disperse orange 11) 

 

20 

VI 116-85-8 60710 

O

O NH
2

OH  

Duranol red 2B 

(Disperse red 15) 
21 

VI 2872-48-2 62015 

O

O NH
2

O
CH

3

NH
2  

Duranol red X3B 

(Disperse red 11) 
22 

VI 82-33-7 62030 

O

O NH
2

NH
2

NO
2  

Celliton fast violet B 

(Disperse violet 8) 
23 

a) Color Index Number 

b) I: nitrodiphenylamine, II: azo, III: disazo, IV: methine, V: naphthalimide, VI: anthraquinone 

 

2.2. Molecular Modeling 

All structures were drawn with the Hyperchem 

software (Ver. 7) [32] and pre-optimized with the 

molecular mechanics force field (MM+). The final 

geometries were obtained by re-optimization of the 

MM+ optimized structures by applying AM1 semi-

empirical method in Hyperchem program [33, 29]. All 

calculations were carried out at the restricted Hartree-

Fock level with no configuration interaction. The 

molecular structures were optimized using the Polak-

Ribiere algorithm until the RMS gradient was 0.01 kcal 

mol
-1

. The Hyperchem output files were used by the 

DRAGON program (Ver. 3) to calculate descriptors 

(1497 descriptors) [34]. Statistical investigation of the 

data and multivariate data analysis has been performed 

mainly by the QSARINS software (Ver. 2.2) [35]. 

 

2.3. Validation paremeters 

The quality of GA-MLR model determined from a 

number of metrics including correlation coefficient 

(R
2

train), adjusted R
2
 (R

2
adj ), root-mean-squared error 

for the training set (RMSEtrain), leave-one-out (LOO) 
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cross-validated correlation coefficient (Q
2
LOO), and 

leave-many-out (LMO) cross-validated correlation 

coefficient (Q
2
LMO), y-scrambling test (R

2
Yscr and 

Q
2
Yscr), random response procedure (R

2
Yrnd and Q

2
Yrnd), 

random descriptor procedure (R
2

Xrnd and Q
2
Xrnd), 

external validation (R
2

ext), lack-of-fit (LOF) test, 

standard error of estimate (s) and variance ratio to 

judge the overall significance of the regression 

coefficients (F). 

 

3. Results and discussions 

There are 23 molecules in the data set and according to 

a rule of thumb, the models with maximum number of 

variables of 3 were investigated [26]. The optimum 

number of descriptors to be included in the model was 

determined by plotting Q
2
LOO vs. lack of fitting (LOF) 

[37]. This plot helps in the selection of the models with 

the best compromise between high predictability (high 

Q
2
LOO) and small dimension (low LOF) (as, for 

example, the model which contains 3 descriptors i.e. 

T(N..Br), JGT and R5u_A in the Figure 1). 

Figure 2 shows the variation of the main model 

parameters (Q
2
 and R

2
) with number of descriptors. It 

is clear from this figure that in three numbers of factors 

we have maximum Q
2
 and R

2
 values. 

 

 
Figure 1: Plot of Q

2
LOO vs. lack of fitting. 

 

 
Figure 2: Effect of the number of descriptors on the main model parameters. 
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GA-MLR analyses were carried out, and the 

following model was generated:  

 

RM= 3.4754+ 0.0672 T(N..Br)-4.9555 JGT - 0.6058 

R5u_A                                                                 (2) 

 

Ntrain= 18, R
2
train= 0.8793, R

2
adj= 0.8534, RMSEtrain= 

0.2090, s= 0.2370, F= 33.9865 

Q
2
LOO=0.8213, Q

2
LMO= 0.7337, R

2
ext= 0.8653 

 

The corresponding experimental and predicted 

values of the RM for all molecules studied in this work 

are listed in Table 2. 

Table 3 represents the selected descriptors and their 

chemical meanings. The correlation matrix among 

these three descriptors is shown in Table 4. As shown 

in Table 4, the inter-correlation of the descriptors used 

in the GA-MLR model was low (below 0.53) which is 

in conformity with a statistically significant model. 

Figure 3 shows the predicted vs. experimental RM 

values plots using the Eq. (2). As can be observed, the 

ability of models to describe RM data was satisfactory. 

 

 

Table 2: Data set and corresponding experimental and predicted values of RM. 

Noa T(N..Br) JGT R5u_A RF RM(exp) RM(pred) Residual 

1 0 0.567 1.153 0.55 -0.087 -0.033 0.054 

2 0 0.412 0.718 0.07 1.123 0.999 -0.124 

3* 0 0.606 1.157 0.56 -0.105 -0.229 -0.124 

4 0 0.520 1.289 0.65 -0.269 0.118 0.387 

5 0 0.529 1.314 0.24 0.501 0.058 -0.443 

6* 24 0.623 1.131 0.11 0.908 1.316 0.408 

7 24 0.656 1.208 0.07 1.123 1.106 -0.017 

8 0 0.579 1.222 0.62 -0.213 -0.134 0.079 

9 0 0.579 1.300 0.63 -0.231 -0.181 0.050 

10* 0 0.601 0.874 0.31 0.347 -0.032 -0.379 

11 24 0.733 1.381 0.20 0.602 0.619 0.017 

12 0 0.688 0.675 0.62 -0.213 -0.343 -0.130 

13 0 0.455 0.706 0.20 0.602 0.793 0.191 

14 0 0.612 1.121 0.82 -0.659 -0.236 0.423 

15 0 0.417 0.716 0.09 1.005 0.975 -0.030 

16 0 0.470 1.304 0.26 0.454 0.356 -0.098 

17 0 0.694 1.319 0.86 -0.788 -0.763 0.025 

18 0 0.533 1.047 0.25 0.477 0.200 -0.277 

19 0 0.569 1.290 0.68 -0.327 -0.126 0.201 

20* 0 0.643 1.247 0.42 0.140 -0.467 -0.607 

21 0 0.639 1.355 0.72 -0.410 -0.512 -0.102 

22 0 0.676 1.412 0.77 -0.525 -0.730 -0.205 

23* 0 0.705 1.584 0.82 -0.659 -0.978 -0.319 

a) The numbers marked by an asterisk are test set. 
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Table 3: Descriptors used in the regressed GA-MLR model. 

Symbol Definition Class 

T(N..Br) Sum of topological distances between N..Br Topological 

JGT Global topological charge index Galvez topological charge indices 

R5u_A R autocorrelation of lag 5 /unweighted GETAWAY 

 

 

Table 4: Correlation coefficient matrix for Eq. (2). 

No. T(N..Br) JGT R5u_A  

T(N..Br) 1 - - 

  JGT 0.365 1 - 

R5u_A  0.136 0.530 1 

 

 

Figure 3: The linear relation between experimental and predicted RM values, the dotted lines indicate the 3σ interval. 

 

The applicability domain (AD) of the model was 

evaluated by plotting standardized residuals vs. 

leverage (Hat) values (The Williams plot). As can be 

seen from Figure 4, all chemicals have cross validated 

standardized residuals lower than three standard 

deviation units (3σ) and leverages lower than the 

warning h* value of 0.667. Thus there is no outlier and 

structurally influential chemicals in the developed 

model. 

Also the Y-scrambling test was applied to assess 

the presence of chance correlation in the developed 

model [37]. As can be seen from Figure 5, there is a 

significant difference in the quality (R
2
 and Q

2
 values) 

of the original model and that of model obtained with 

random responses (for 2000 iterations). Additional 

tests, including the scatter plots of leave-many-out 

(LMO) models vs. the original model, random 

response, and random descriptor procedures indicated 

adequate statistical quality of the model (see 

Supplementary files Figures S1–S4) [37]. Kxy is 

correlation between the block of the modeling 

descriptors and the response. 
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Figure 4: The Williams plot of the training and test sets (standardized residuals =3σ). 

 

 

 

Figure 5: The plot of Y-scrambled models compared to the original model. Kxy is correlation between the block of the 

modeling descriptors and the response. 
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3.1. Interpretation of descriptors 

The QSRR study revealed that T(N..Br) has positive 

contribution to the RM value, while JGT and R5u_A 

descriptors have negative contribution to the RM value. 

However, to the best of our knowledge, no reports have 

been published on the application of QSRR in paper 

chromatography. On the other hand, several 

investigations have been conducted to study the 

cellulose-dye interactions. Therefore the explanations 

and mechanisms in cellulose-dye interaction studies 

have been used to interpret the descriptors appeared in 

the regressed QSRR model.  

Cellulose is formed by long chains of β-

glucopyranose units connected one to another at the 1–

4 positions. Stationary phase in PC is high-purity 

fibrous cellulose. The fibers are longer than those in 

TLC. Partition chromatographic mechanisms operate 

on cellulose surface even if adsorption effects cannot 

be excluded [38]. It has been shown that several types 

of interactions including: electrostatic (electronic) [39-

41], specific binding centers due to the supramolecular 

structure of the cellulose [42], fragment composition 

[40] and steric effects [39, 43] have influence on the 

affinity of dyes for cellulose fiber. 

In model, the topological descriptor T(N..Br) 

represents the sum of topological distances between 

nitrogen and bromine in those molecules that contain 

both of these atoms [44]. T(N..Br) is a 2D descriptor 

and has a positive coefficient, which advocates larger 

distances between N and Br atoms in a molecule for 

the higher RM value. 

JGT is the global topological charge index which 

belongs to the Galvez topological charge indices. 

Topological descriptors help to differentiate the 

molecules according mostly to their size, degree of 

branching, flexibility and overall shape [45]. These 

indices describe charge transfer between pairs of atoms 

and therefore global charge transfer in a molecule. The 

GA-MLR analysis revealed a model showing the 

significant dependence of the RM value on global 

topological charge index of the disperse dyes. This 

descriptor has the negative sign, which indicates that an 

increase in the global charge transfer in a molecule, 

hence increasing the polarizability, leads to a decrease 

in its RM value [46]. JGT can be interpreted to contain 

a blending of size and electronic effects; which is in 

accordance with the literature for assessing cellulose-

dye interactions [47]. 

The last descriptor is R5u-A. This R-GETAWAY 

descriptor has been proposed as chemical structure 

descriptors derived from the molecular influence 

matrix (MIM). They are calculated from the 

influence/distance matrix R where the elements of the 

MIM are combined with those of the geometry matrix 

[48]. R5u_A gives information about the presence of 

significant substituents in the molecule. Mantle atoms 

in the molecule result in higher values for R5u_A [49].  

The hydrogen bonding between peripheral amino 

groups and parallel chains of cellulose are good 

candidates to give significant R5u_A values (Figure 6). 

The inspection of the values of this parameter indicate 

compounds 22 and 23 as presenting the highest R5u_A. 

This can be corroborated nicely with the detrimental 

presence of the amino groups in compounds 22 and 23. 

 

 

 

Figure 6: The proposed molecular mechanism for the interaction of compounds 20, 22 and 23 via hydrogen bond with 

cellulose. 
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The details of molecular mechanisms for the 

interaction of compounds 20, 22 and 23 with cellulose, 

are illustrated in Figure 6, where the dye molecule 

donates a lone pair of electrons to the hydrogen atom 

of a hydroxyl group of cellulose via one (compound 

20) or two (compounds 22 and 23) amino functional 

groups. The compound 23 has two amino groups in 1 

and 4-positions, which causes the compound 23 to have 

highest R5u_A value (Table 2 and Figure 6). On the 

other hand, the results obtained from solid state show 

that one hydrogen atom of the amino group is 

intramolecularly hydrogen bonded to the adjacent 

carbonyl oxygen atom. However it should be noted that 

we did not considered the intramolecular hydrogen 

bonds [50]. The lower RM values in compound 20 and 

22 can be attributed to the presence of methyl and 

methoxy groups, which probably cause steric strain in 

the affinity of dye molecules for cellulose [39, 43]. 

 

4. Conclusion 

In the present work, we have constructed a quantitative 

structure-retention relationship model, applying the 

genetic algorithm based multiple linear regression 

strategy, for a series of 23 disperse dyes tested by 

Sramek. The statistical quality of obtained GA-MLR 

with three theoretical descriptors was validated by use 

of leave-one-out cross-validation, leave-many-out 

cross-validation, external validation, Y-randomization 

and applicability domain analysis. The analysis of 

appeared theoretical descriptors provided some useful 

structural information which was associated with paper 

chromatic retention behavior of disperse dyes. The 

simultaneous appearance of T(N..Br), JGT and R5u_A  

reveals the importance of the topological and 

GETAWAY descriptors in the chromatographic 

behavior of disperse dyes, thus allowing us to use such 

regressed model in predicting retention behavior of 

other disperse dyes not included in the study. 

Moreover, due to the similar mode of action in both 

paper chromatography and fabric dyeing, the 

developed model has the potential to assist in better 

understanding the dye-fabric interaction in order to 

reduce the unfixed dye concentrations in the dye bath 

after dying to consider environmental and economical 

aspects. 
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