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 odel selection of nano and micro droplet spreading can be widely used 
to predict and optimize of different coating processes such as ink jet 
printing, spray painting and plasma spraying. The idea of model 

selection is beginning with a set of data and rival models to choice the best one. 
The decision making on this set is an important question in statistical inference. 
Some tests and criteria are designed to answer to this question that which of the 
rival models is the best one. The purpose of this article is to propose a new interval 
say tracking interval for comparing the two rival models and examine its suitability 
in the spread data of carbon nanotubes coating. The proposed interval can be used 
for non-nested or nested models and whether both, one or neither is mis-specified. 
An important implication of the present study is that if the rival models are really 
close, then the proposed interval can be determined the equivalent models under 
censored data. Prog. Color Colorants Coat. 9 (2016), 17-28 © Institute for Color 
Science and Technology. 
 

 
  
  

1. Introduction 

Coating of a surface by droplet spreading plays an 
important role in several novel industrial processes, 
such as plasma spray coating, ink jet printing, nano 
safeguard coatings and nano self-assembling. Spray 
coating is commonly used to apply protective coatings 
on components to shield them from wear, corrosion, 
and etc. The properties of the coatings are largely 
dependent on the splat morphology and their stacking. 
Researches strongly indicate that CNTs (carbon 
nanotubes) play a critical role in the improvement of 
splat morphology [1]. Development of splat data 
analyzes, which can predict morphology of splats, can 

 
potentially reduce the cost of the development of new 
coatings considerably. The model selection will also 
enable us to predict, improve and optimize the design 
of existing spraying guns. There are different model 
selection tests for discriminating between two complete 
models. Each of the tests has advantages and 
disadvantages in their domain of usage. In almost all of 
the tests and criteria for model selection, the maximum 
likelihood estimator and maximized likelihood function 
have an essential role. For example, Gupta and Kundu 
[2] compared the Weibull and the generalized 
exponential (GE) distributions using the maximized 
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likelihood ratio test. Kundu and Manglick [3] 
discriminated between the Log-Normal and gamma 
distributions, Pakyari [4] introduced the diagnostic 
tools based on the likelihood ratio test (LRT) and the 
minimum Kolmogorov distance (KD) method for 
discriminating between generalized exponential, 
geometric extreme exponential and Weibull 
distributions. Bromideh [5] compared the Gamma and 
the Log-Normal Distributions Based on Kullback-
Leibler Divergence. Also Voung [6] introduced the test 
for comparing the two complete non-nested models. In 
Vuong viewpoint, the best model is the model which 
maximizes the relevant part of the Kullback–Leibler 
risk. The null hypothesis of Vuong’s test is the 
expectation under the true model of the log-likelihood 
ratio (LR) of the two rival models which are equal to 
zero. Moreover, in many experimental studies such as 
plasma spray coating, it is quite common that complete 
data are not observed. Data obtained from such 
experiments are called censored data. When a data set 
is censored, the problem of choosing the correct 
distribution becomes more difficult. Because for 
censored data, the two models may provide similar data 
fit. Type I and Type II hybrid censoring schemes are 
the common hybrid censoring schemes. Both these 
censoring schemes have some disadvantages. 
Specifically, in Type I hybrid censoring, there may be 
very few or even no failures observed whereas in Type 
II hybrid censoring the experiment could last for a very 
long period of time. In order to provide a guarantee in 
terms of the number of failures observed as well as 
time to complete the test, Chandrasekar et. al. [7] 
introduced generalized Type II hybrid censoring 
scheme (GHCS) and it can be described as follows. 
Suppose that n identical units are put on a test, with the 
lifetimes and ordered lifetimes of the n items are 

denoted by 1,..., nX X  and 1,..., nY Y respectively. Fix 

 0,...,r n  and time points 1 2, (0, )T T   , such that

1 2T T . If thr failure occurs before time T1, the 

experiment terminate at T1; if the thr failure occurs 

between T1 and T2, the experiment terminate at rY and 

if the thr failure occurs after time T2, then the 
experiment terminate at T2. Under this censoring 
scheme, it is guaranteed that the total time under test 
will be at most T2. Therefore under the GHCS, we have 
the following three cases: 
 

Case I: 

1 2 10            the experiment terminate at   rY T T T    

Case II:  

1 20            the experiment terminate at r rT Y T Y         (1) 

Case III: 

1 2 20            the experiment terminate at  rT T Y T    

 
Based on the observed data, the log-likelihood 

function for combined above cases can be written as:    
 

1

( ) log ( ) ( ) log ( )
d

f
n i

i

L f y n d F s




               (2) 

 

Here, (.) and (.)f F
  are the probability density 

function and the survival function respectively. Also, d 
denotes the number of the total failures in experiment 
until time s and d1 and d2 denote the number of failures 
that occur before time points T1 and T2, respectively.  
In other words, 
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Although some articles have been done on the 

generalized hybrid censoring scheme but we have not 
come across any article on the behavior of the two rival 
models under this censoring scheme for the nanotube 
coating data.  

So, the main objective of this paper is the 
determination the best model for the nanotube coating 
data. For this purpose, first we use the asymptotic 
distribution of the log-likelihood ratio statistic in 
comparing the two rival models under GHCS. It is 
observed that the asymptotic distribution is normally 
distributed. The variance of this normal distribution 
can be used to construct the new model selection test 
say tracking interval. The tracking interval helps us to 
evaluate proposed models in comparison with each 
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other. In other words, if the calculated distance 
includes zero, it can be concluded that based on the 
predetermined confidence, both proposed models are 
equivalent. The proposed interval is easy to compute 
and could be useful in a wide variety of applications. 
For example, Commenges et. al. [8] considered the 
tracking interval between two complete models in two 
applications. The first is a study of the relationship 
between body-mass index and depression in elderly 
people. The second is the choice between models of 
HIV dynamics, where one model makes the distinction 
between activated CD4+T lymphocytes and the other 
does not. Panahi and Sayyareh  [9-11] used the 
tracking interval for comparison of two rival models of 
micro-droplet splashing data under different censoring 
schemes. 

The second objective of this paper is to analyze the 
carbon nanotubes coating data. We consider a large 
class of probabilistic models. Then we construct the 
tracking intervals to compare the two rival models 
under different censoring schemes. The rest of the 
paper is organized as follows. In Section 2, using the 
asymptotic distribution of LR Statistic, we propose the 
tracking interval for the difference of the expected 
Kullback–Leibler (KL) divergence of two rival models 
under generalized Type II hybrid censoring scheme. 
Analysis of the splats reinforced with carbon nanotubes 
data are provided in Section 3 and finally we conclude 
the paper in Section 4.  
 

2. The New Test for Comparison the Two 
Models 

Consider a sample of independently identically 

distributed (i.i.d.) random variables, nXX ,...,1 , having 

probability density function hxh )( . Let us consider 

two rival models,  (.);  ( )F f f     and   

 (.);  ( )G g g     , where, M and B are the 

parameter spaces of  and  respectively.  

Definition: ( )f is well specified if there is a true 

value 0   such that 0 (.)f h  ; otherwise it is 

mis-specified. Now, based on the following 

assumptions, we first provide the asymptotic 

distribution of the LR statistic and then construct the 

tracking interval.  

The minimum assumptions, , for non-degenerate 

interval M are: 

:1  For almost all x, the derivatives 

   ln f x   and  2 2( ) ln f x   all exist for 

every M  . 

2 :  For all ,M the partial derivative    xf 

, is integrable, the partial derivative    xF , exists 

for ,x ; and satisfies,  

 

         
x

F x f u du  


      

 

3 : For every , we have,   
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1 22
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                   and   ( )  ;   

f x f x

f x

 



 



 
   

 


 



 

 

where, ( )  ;    1, 2,3i d x i    . (   is the 

Lebesgue measure and M  ). 

4 :  For every ,M   
1

( )F x
  is bounded by ( )x  

respectively, where, ( ( ))E X C  ; C  is positive 

constant, (notice that, ( ( )) ( ) ( ) ( )E X x f x d x    ). 

5 :  For every , we have,  

 

2

ln ( ) ( ) ( )f x f x d x  

      . 

 

2.1. Asymptotic Distribution of the LR Statistic 

From (2), the difference of the log-likelihood functions 
of the two rival models under GHCS can be obtained 
as: 
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where, ˆn and ˆ
n  are the maximum likelihood 

estimators for the parameters  and  respectively.  

Lemma: Suppose that 1,...,  dY Y  are distributed as 

the order statistic of a random sample of size d from 
truncated distribution at s by probability density 

function (pdf) h*. Now, if 
r

p
n
  as n   such that

P
r pY  , the thp  percentile of true distribution 

respectively, then from Voung [6] and the property of 
Continuous Mapping, we have  
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where,  and  d s  are defined in (3) and (4) 

respectively and    
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Then the difference log-likelihood function of the 

two mis-specified rival models under generalized Type 
II hybrid censored data is converges in probability as 
below: 
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where, 
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and 
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are pseudo-true values of  and  ,  respectively.  

Theorem 2 (Asymptotic Distribution of the LR 

Statistic, ˆˆ( , )f g
n n nL   ):  Under regularity conditions 

1 5  , suppose that the proposed model is mis-

specified and * *f g  , then, 
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      (6) 
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where,    

 

*

*

*

*
1 *

2
 *

( )
log

( )

( )
                (1 ) log

( )

GHCS h

h

f W
Var

g W
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 



     (7) 

 

and 1( ,..., )nW w w  the complete data and

1( ,..., )n dZ z z   the complete data of size  n d , 

from the left truncated population with density 

function, *
1

( )
;       

( )

f z
h z s

F s



  . Note that, the 

sequences of random variables 'sW  and 'sZ  are 

independent.  
Proof:  Using the missing information principles of 

Louis [12], the observed information under GHCS is: 
 

1 1
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where, W and Z are defined in (7). For simplicity, 

we replace (  )if z Y
by ( )if z

 throughout the proof. 
Now, from the Voung [6], we can write 
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Note that, 
2 f
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similarly, 
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. Also, it is 

known that, n * n *
ˆˆn (α -α )  and  n (β -β ) are O (1)p (see 

appendix). So, we have 
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But from the multivariate central Theorem, the first 
term in the right hand side converges in distribution to

2
 *(0, )GHCSN  . It now suffices to show that 
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Now, using the missing information principle (8), 

we can write 
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Now, If,   1   as 
n d

p n
n


  


such that 

 ps 


in probability, then using Continuous 

Mapping Theorem and the properties of variance, we 
have 
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. 

 

Note that, we can propose the following empirical 
variance for constructing the useful interval. This 
interval can be used for comparing two models in the 
applied sciences.  
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2.2. Tracking Interval for Comparing the Two 
Models under GHCS 

In this section we propose the model selection test 
using an interval say tracking interval instead of 
hypothesis testing of Voung as its dual; it is because 
the confidence interval is a set of all acceptable 
hypotheses with pre-assigned confidence.  

We propose the tracking interval for a difference of 
expected Kullback-Leibler risks,  

),(),(),(
ˆˆˆˆ nnnn ghEKLfhEKLgfhybrid
  , to 

compare the two rival models based on GHCS, where 
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This interval has another interpretation for the use 
of Akaike information criterion (AIC). In fact we are 
not in a situation to detect the best model but we are in 
search for a model which has the relatively less risk 
compared to other models. Now, using (9) and Panahi 
and Sayyareh [9] [11], the tracking interval under 
GHCS is given by 
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where,  
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;  p and q are the number of parameters in two models. 
This interval has the property as 
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and Ph represents the probability with density h. 
Based on this tracking interval, if the calculated 
distance (10) includes zero, it can be concluded that 
based on the predetermined confidence both the 
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proposed models are equivalent. An interval which 
does not contain zero indicates that one model is better 
than the other one.  

 

3. Applications of Tracking Interval to Real 
Data  

In this section, we analyze the data of splats with 
carbon nanotube (CNT) addition, obtained in Keshri 
and Agarwal [1]. The data sets consist the sub-micron 
Al2O3 powder was spray dried (referred as A-SD), 
sub-micron Al2O3 with 4 weight percent of CNTs 
(referred as A4C-SD) and 8 weight percent of CNTs 
(referred as A8C-SD) materials.  First we want to 
choose the best fitted model based on the current 
criteria such as log-likelihood (LL) values, Akaike 
information criterion (AIC) values, Bayesian 
information criterion (BIC) values and the 
Kolmogorov-Smirnov (K-S) distances. It is observed 
that the mentioned data sets are always positive and 
therefore, it is reasonable to analyze the data of splats 
reinforced with carbon nanotubes using the probability 
distributions, which have support only on the positive 
real axis. Thus, we fit different distribution functions, 
namely generalized exponential (GE), 
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and exponentiated Burr III (EBIII)  
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and report the estimated parameter values, K-S 
distances, AICs, BICs and LL values in Tables 1, 2 and 
3 respectively.  From the Tables 1-3, it is clear that, 
generalized exponential (GE) distribution is the best 
fitted model based on maximum log-likelihood values, 
minimum AIC and BIC values or the minimum K-S 
distance. Now using the tracking interval we want to 
observe how the two models behave for these data sets. 
For A-SD, we consider the following three different 
cases of censoring schemes: 
 

Case 1: 1T  29.25, 2T  29.75 and r=22( ry  27.25). 

Case 2: 1T  27.75, 2T  30.75 and r=46( ry  28.25). 

Case 3: 1T  27.75, 2T  30.75 and r=86( ry  31.25). 

 
For all cases of censoring schemes, we consider 

two different cases of rival models: 
A: GE (f) and EW (g) distributions (GE and EW are 

well specified and mis- specified models respectively).  
B: BIII (f) and IW (g) distributions (Two mis-

specified models). 
Furthermore, for A4C-SD and ABC-SD, we also 

adopt the three different cases of censoring schemes as: 
 

Case 1: 1T  34.25, 2T  35.75 and r=30( ry  33.75). 

Case 2: 1T  33.25, 2T  36.25 and r=61 ( ry  35.75). 

Case 3: 1T  33.25, 2T  36.25 and r=87( ry  37.25). 

 

and 

 

 

Case 1: 1T  43.25, 2T  45.25 and r=34( ry  41.25). 

Case 2: 1T  42.75, 2T  45.25 and r=66 ( ry  44.25). 

Case 3: 1T  42.75, 2T  44.25 and r=86( ry  45.25). 

 

respectively. Similar to A-SD, we consider two 
different cases of rival models: 

A: GE and EW distributions (GE and EW are well 
specified and mis- specified models respectively). 

B: IW and BIII distributions (Two mis-specified 
models). 

In all the three cases, we have estimated the 
unknown parameters using the MLEs and then 
constructed the tracking intervals. The results are 
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reported in Table 4. First, we consider EW and GE 
distributions as the rival models (A). For all cases and 
materials, it is observed that both limits of the tracking 
intervals are negative, which indicates that the GE is 
better than the EW to estimate the true model (as we 
expected). Also, for B, the both limits of the tracking 
intervals are positive, which indicates that the IW is 

better than the BIII density to estimate the true model 
for all cases and materials. Furthermore in all the cases, 
the lengths of the tracking intervals are small. Thus the 
two models are similar in information criteria sense. 
So, the tracking interval for the difference of risks is 
easy to compute and could be useful in a wide variety 

of applications. 
 

 

 

Table 1: Estimated parameters, K-S distances and AIC values for different distribution functions of A-SD. 

Distribution Estimated parameters  K-S AIC BIC LL 

GE 93.551 10    0.7061   - 0.1005 3.290102 3.340102 -1.625102 

EW -51.208 10    3.8572   21.019 10    0.1293 3.316102 3.349102 
-1.627102 

BIII 9 9.908 10    6.8978   - 0.3622 4.510102 4.560102 -2.235102 

W -45.383 10    2.2335   - 0.5486 6.442102 6.492102 -3.201102 

IW 111.75 10    7.7463   - 0.3521 4.325102 4.375102 -2.142102 

BXII 0.07332   4.19915   - 0.6226 10.055102 10.105102 -5.007102 

EBIII 71.014 10    9.7985   71.510 10    0.2816 4.000 102 4.030 102 -1.680103 

 

 

 

 

 

Table 2:  Estimated parameters, K-S distances and AIC values for different distribution functions of A4C-SD. 

Distribution Estimated parameters K-S AIC BIC LL 

GE 93.398 10   0.6435  - 0.1125 3.422102 3.472102 -1.691102 

EW -61.125 10   4.1972  2.068 10   0.2099 3.877102 3.907102 
-1.908102 

BIII 10 3.740 10   6.8785  - 0.4311 4.935102 4.804102 -2.447102 

W -46.163 10   2.0969  - 0.5925 7.054102 7.104102 -3.507102 

IW 122.760 10   8.1016  -  0.3919 4.663102 4.714102 -2.312102 

BXII  0.08162  3.45004  - 0.6240 10.737102 10.787102 -5.348102 

EBIII 71.080 10   9.2458  71.498 10    0.2797  4.457102 4.487102 -1.739102 
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Table 3: Estimated parameters, K-S distances and AIC values for different distribution functions of A8C-SD. 

Distribution Estimated parameters K-S AIC BIC LL 

GE 91.124 10   0.48833  - 0.2285 3.580102 3.631102 -1.770102 

EW -73.591 10   4.3474  7.719 10   0.2201 3.622102 3.672102 -1.791102 

BIII 10 3.873 10   6.5134  - 0.4366 5.416102 5.466102 -2.688102 

W 0.19341  0.4094  - 0.5845 10.463102 10.514102 -5.212102 

IW 11 8.003 10   7.3139  - 0.4262 5.208102 5.259102 -2.584102 

BXII 0.0720  3.6803  - 0.6249 11.252102 11.302102 -5.606102 

EBIII 64.998 10   8.6464  72.495 10   0.4145 3.624103 3.629103 -1.810103 

 

 
 

Table 4: Tracking intervals for two rival models (A and B) and three censoring schemes (three cases). 
Cases  Case 1 Case 2 Case 3 

Rival models A B A B A B 

A-SD       

Lower -1.342864 3.580841 -1.155680 2.04677 -8.17210-1 5.607175 

Upper -1.057849 3.644199 -8.12410-1 2.110685 -6.34310-1 5.669738 

Length 2.85010-1 0.063358 3.43310-1 0.063914 1.82910-1 0.062563 

A4C-SD       

Lower -9.21010-1 1.695464 -1.019408 3.724907 -1.125662 5.225219 

Upper -6.85810-1 1.748430 -7.98810-1 3.777338 -9.60110-1 5.277229 

Length 2.35110-1 0.052965 2.20510-1 0.052430 1.65510-1 0.052009 

A8C-SD       

Lower -1.229083 3.30792 -1.243391 4.655653 -1.420072 5.452311 

Upper -1.092203 3.34547 -1.130999 4.692975 -1.309900 5.489492 

Length 1.36810-1 0.03755 1.12310-1 0.037322 1.10110-1 0.037180 

 

 
 

4. Conclusions 
In this paper we consider the problem of comparing the 
two rival models when the data are generalized hybrid 
censored sample of carbon nanotubes coating. We 
drive the asymptotic distribution of the log-likelihood 
ratio (LR) statistic under GHCS. The results 
established will provide insight into the missing 
information principle. Then, using the asymptotic 
variance of this statistic, we introduce the new interval 
say tracking interval for model selection. A real 

 
example has been presented to illustrate all the 
inferential results established here. Based on the 
limited set of data and using several statistical criteria 
such as minimum K-S distance, minimum AIC and 
BIC values and maximum LL value, the GE 
distribution function appears to be more appropriate 
statistical distribution function. Moreover the results 
indicate that the tracking interval works quite well in 
discriminating between the two rival models and has 



         Panahi and Asadi 

26 Prog. Color Colorants Coat. 9 (2016), 17-28  

advantage instead of other model selection tests. We 
hope that the new model selection test will attract 
wider application in all areas of research. 
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The first term in (A.4) converges in probability to 
zero. So, based on (A.3) and after some simplification, 
we obtain  
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Thus, from (A.4) - (A.6), we have 
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where, *B  converges to bounded value, say  . 

Thus, 
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where, 2 / 1
GHCS

P
fA J   . So, it suffices to show 

that the numerator is asymptotically )1,0(N . Using 

(A.3) and Slutsky Theorem, we have 
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Now, using Slutsky Theorem, we obtain, 
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where, 
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 and  and  UV are independent. 

Now, using continuous mapping Theorem, (A.8) and 
(A.9), we conclude that 

 

 

0 01

log ( ) ( ) log( ( ))

          (0,  (1 ) )

n d

i
i

D

f y n d F s

N p



 







 
 

 

  





  

 

and the proof is complete. Thus, we proved that 

0ˆ( ) =O (1).n pn   So for mis- specified models 

based on Voung (1989), we can conclude that, 

*ˆ( ) =O (1)n pn   . 
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