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  n this paper we sensitized two new organic dyes (Dye 1 and Dye 2) 
based on indoline with indoxyl as the electron donor group. We used 
acrylic acid and cyanoacrylic acid as the electron acceptor anchoring 

group in Dye 1 and Dye 2, respectively. The proposed dyes were sensitized from 
carbazole as the starting material by standard reactions and characterized by 
different techniques such as melting point, FTIR, 1HNMR, elemental analysis 
and UV-Visible spectroscopy after purification. Spectrophotometric 
measurements of the synthesized dyes in solution and on a TiO2 substrate were 
carried out in order to assess the changes in the status of the dyes. The 
wavelength of maximum absorption for Dye1 and Dye 2 in solution are 551.5 nm 
and 558 nm and on TiO2 films are 576 nm and 585 nm, respectively. Finally, the 
proposed dyes were used as sensitizer in a dye solar cell structure and their 
photovoltaic properties were also investigated. The Conversion efficiency for 
Dye 1 and Dye 2 were 1.03% and 1.45%, respectively. Prog. Color Colorants 
Coat. 8 (2015), 309-315 © Institute for Color Science and Technology. 
 
 
 

 
 

  
  

1. Introduction 

Dye-sensitized solar cells have engrossed a great deal 
of interest, as they offer high energy conversion 

 
efficiencies due to low cost and environmentally 
friendly [1]. Recently, more and more attention has 
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been directed toward the application of metal-free 
organic dyes in dye-sensitized solar cells because such 
organic dyes do not contain expensive ruthenium of 
limited resource, and have additionally the advantages 
of relatively facile dye synthesis method and capability 
of easy molecular tailoring [2]. Coumarine [3], polyene 
[4], hemicyanine [5], thiophene based [6], and indoline 
[7] dyes are suitable for application of dye-sensitized 
solar cells that exhibiting relatively high performances 
in dye-sensitized solar cells have so far been designed 
and developed. In such compounds, the electron-
donating and electron-accepting groups are connected 
through a π-conjugated linker (a D-π-A molecular 
structure) [8]. Their properties can be finely tuned by 
independently altering, alternating or matching 
different groups in such D-π-A dyes [9]. In research for 
high efficiency organic dyes for solar cells, 
development of new materials offering optimized 
thermal and photochemical stabilities, as well as 
appropriate optical and electrical properties is of 
utmost importance [10].  

In the present study, two metal-free organic dyes 
were obtained utilizing indoxyl as electron donor and 
cyanoacrylic acid or acrylic acid as electron acceptor 
groups. The dyes together with their corresponding 
intermediates were then purified and characterized. The 

spectrophotometric properties of the prepared organic 
dyes in THF solvent and on the nanoanatase TiO2 
substrate were examined. The absorption maxima and 
the intensities of the resultant dyes were also obtained. 
Dye sensitized solar cells were then fabricated utilizing 
these metal-free organic dyes and their photovoltaic 
behaviors were determined. Schematic representation 
of the route for synthesis of the prepared metal-free 
organic dyes is given in Figure 1. 

 

2. Experimental 

2.1. Materials and instrumentation 
All compounds used in this study were of analytical 
grade unless otherwise stated. The synthesis route and 
fully characterization of intermediates (1) have been 
described previously [11, 12]. The FTIR measurements 
were carried out on a Bomene Canada instrument. 
NMR measurements were carried out on a 500 MHz 
Joel instrument. Differential scanning calorimetric 
(DSC) analyses were carried out on a Dupont 
2000DSC instrument. UV-visible spectrophotometry 
was carried out on a Cecil 9200 double beam 
transmission spectrophotometer to obtain molar 
extinction coefficients and absorption maxima. 
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Figure 1: Synthesis route of the dyes. 
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2.2. Synthesis of Dyes  

2.2.1. Synthesis of Dye 1 

20 mL acetonitrile were added separately to 17.6 mmol 
1 each containing 42 mmol malonic acid and 8 drops of 
piperidine. Each mixture was stirred at 90 °C for 2 h. 
After each reaction was completed, the resultant 
precipitate was filtered and purified by silica gel 
column chromatography (chloform:methanol 8:1). 
Yield: 87%; mp 295.44 °C; FTIR (KBr) (Cm-1): 1711 
C=O str., 1499, 1603: C=C str, 1285: C-N str; 1H-
NMR (CDCl3), δ (ppm): 3.94 (s, 6H), 6.47-6.49 (d, 
1H), 6.66-6.68 (d, 2H), 7.14 (s, 3H), 7.22 (t, 3H), 7.37 
(d, 2H), 7.87-7.89 (d, 5H), 7.93-7.95 (d, 4H), 8.58 (d, 
2H), 9.72 (s, 1H, CO2H); Elem. Anal. Calcd. for 
C37H28N3O4: C, 75.97%; H, 4.54%; N, 9.09%. Found: 
C, 75.93%; H, 4.53%; N, 9.11%. 

 

2.2.1. Synthesis of Dye 2 

20 mL acetonitrile was added separately to 8 mmol 1 
each containing 16 mmol cyanoacetic acid and 9 mmol 
of piperidine. Each mixture was refluxed for 6 h. After 
each reaction was completed, it was cooled to room 
temperature. The resultant precipitate was filtered and 
purified by silica gel column chromatography 
(ethylacetate:methanol 10:1). Yield: 87%; mp 304.37 
°C; FTIR (KBr) (Cm-1): 1724 C=O str., 1486, 1629: 
C=C str, 1281: C-N str; 1H-NMR (CDCl3), δ (ppm): 
4.29 (s, 6H), 7.38-7.40 (d, 2H), 7.44 (s, 3H), 7.47 (t, 
3H), 7.58 (t, 2H), 7.70-7.73 (d, 4H), 8.10-8.12 (d, 4H), 
8.31 (d, 2H), 9.65 (s, 1H, CO2H); Elem. Anal. Calcd. 
for C38H27N4O4: C, 74.88%; H, 4.21%; N, 10.92%. 
Found: C, 74.85%; H, 4.22%; N, 10.90%. 
 

2.3. Electrochemical measurements 

Electrochemical measurements of the synthesized dyes 
were carried out in solution in acetonitrile. The 
oxidation potential (Eox) was measured using three 
small-sized electrodes. Ag quasi reference electrode 
(QRE) was used as the reference. Platinum wires were 
used as the working and the counter electrodes. All 
electrode potentials were calibrated with respect to 
ferrocene(Fc)/ ferrocenium (Fc+) redox couplet. An 
acetonitrile solution of each dye containing 
tetrabutylammonium perchlorate (0.1 mol dm-3) and 
ferrocene (ca. 1 mmol dm-3) was prepared. The 
electrochemical measurements were performed at a 

scan rate of 100 mV s-1 [13]. 
 

2.4. Dye-sensitized solar cells (DSSCs) 
assembly and photovoltaic characteristics of 
the resultant solar cells 

A nanocrystalline TiO2 film was coated on a 
transparent glass support. The dye was adsorbed by 
dipping the coated glass in a 5×10-5 M ethanolic 
solution of the dye containing 7% 4-tert-butylpyridine 
and 50 mM 3α,7α-dihydroxy-5β-cholic acid (cheno) 
for several hours. The visible bands in the absorption 
spectrum of the dyes after adsorption on the nano TiO2 
film only appeared after the TiO2 electrodes were 
dipped in the dye solution for at least 18 hr. The 
presence of 4-tert-butylpyridine and cheno is necessary 
to avoid surface aggregation of the sensitizer (Dye1 or 
Dye2). Finally, the film was washed with an 
acetonitrile-ethanol 1:1 mixed solution. Acenonitrile-
ethylenecarbonate (v/v=1:4) containing tetrabutyl 
ammonium iodide (0.5 mol dm-3) was used as the 
electrolyte. The dye-adsorbed TiO2 electrode, the Pt 
counter electrode and the electrolyte solution were 
assembled into a sealed sandwich type solar cell [14, 
15]. 

An action spectrum was measured under 
monochromatic light with a constant photon number 
(5×1015 photon cm-2 s-1). J-V characteristics were 
measured under illumination with AM 1.5 simulated 
sun light (100 mW cm-2) through a shading mast (5.0 
mm×4 mm) by using a Bunko-Keiki CEP-2000 system. 
 

3. Results and discussion 

The organic Dye 1 and Dye 2 were synthesized as 
schematically shown in Figure 1. Component 1 was 
prepared in a similar way as described in the literature 
[11, 12]. This material was allowed to react separately 
with methyl cyanoacetate by the Knoevenagel reaction 
in the presence of piperidine to give organic dyes [2, 
16]. Equimolar solutions of benzaldehyde and ethyl 
cyanoacetate were mixed in a nitrogen hood to prevent 
the formation of benzoic acid. A second-order 
reversible kinetic rate expression was derived assuming 
that the addition of the enolate anion onto the 
benzaldehyde is the rate-limiting step in the reaction. 
Its addition to the benzaldehyde creates a metastable 
adduct that rapidly transform into the final 
condensation product with the release of a hydroxyl 



         Hosseinnezhad et al 

312 Prog. Color Colorants Coat. 8 (2015), 309-315  

anion [9, 11].  
The wavelength of maximum absorption (λmax) and 

the molar extinction coefficients (εmax) for the two dyes 
in THF are listed in Table 1 and shown in Figure 2, 
together with the λmax of the corresponding dyes 
adsorbed on the TiO2 film. The absorption peaks at 
around 551.5 nm for Dye 1 can be assigned to an intra 
molecular charge transfer between the donor group and 
the acrylic acid group [17], providing an efficient 
charge-separation for the excited state. For the 
cyanoacetic acid based dyes (Dye 2), when an extra 
electron acceptor (-CN) was linked to the vinyl bridge, 
the λmax had a bathochromic shift from 551.5 nm for 
Dye 1 to 558 nm for Dye 2. This shift of the maximum 
absorption peak arises from the fact that more stronger 
electron acceptor of cyanoacrylic groups intensifies  
the overall electron withdrawing ability of the system 
and hence lowering the level of the lower unoccupied 
molecular orbital (LUMO), thus reducing the gap 

between the higher unoccupied molecular orbital 
(HOMO) and the LUMO states [2]. Upon dye 
adsorption on TiO2 surface, the wavelength of 
maximum absorption is bathochromically shifted by 
24.5 and 27 for Dye 1 and Dye 2, respectively, as 
compared to the corresponding spectra in solution, 
implying that dyes adsorbed on the TiO2 surface 
contain partial J-type aggregates [18-20]. The molar 
extinction coefficients of Dye 1 and Dye 2 in THF at 
their respective λmax are also shown in Table 1, 
indicating that these novel dyes have good light 
harvesting abilities [21]. The fluorescent characteristics 
of dyes measured in THF are represented in Table 1. In 
THF solution, dyes show intense green fluorescence 
due to the charge transfer from the electron donating 
group to the accepting group. The fluorescence 
emission maxima of the synthesized Dye 1 and Dye 2 
in the THF are 615 and 632, respectively. 

 
 

 

 

Figure 2: UV-Vis absorption and fluorescence spectra of a) Dye 1 and b) Dye 2. 

 

 

Table 1: Absorption properties of the synthesized dyes. 

Dye 
λmax (nm) 

(in THF) 
ε (M-1cm-1) 

λmax (nm) 

(on TiO2) 

λF (nm) 

(in THF) 

1 551.5 29237 576 615 

2 558 28447 585 632 
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The oxidation potential (Eox) of Dye 1 and Dye 2 

was measured in acetonitrile by cyclic voltammetry. 
There are two distinct redox waves observed in the 
voltammogram. The first oxidative wave (I) was due to 
the oxidation of the internal standard of ferrocene, 
whereas the second wave (II) near was due to the 
electrochemical oxidation of Dyes. The oxidation peak 
potential (Epa) for Dye 1 and Dye 2 can therefore be 
calculated to be +1.18 V and +1.06 V vs Fc/Fc+ in 
acetonitrile, respectively. Although the standard Eox 
value is usually not easily obtained experimentally, it 
can be approximately estimated from the cyclic 
voltammetric peak potential, which equals it if the 
electrochemical oxidation is a reversible step [22]. No 
reduction peak was observed for the synthesized dyes. 
Therefore, the Eox-E0-0 level, where E0-0 represents the 
intersection of normalized absorption and the 
fluorescence spectra in THF (Figure 2), was calculated. 
This is considered to correspond to the reduction 

potential [20]. The E0-0 of Dye 1 and Dye 2 were 
observed at 582 nm and 612 nm corresponding to 1.93 
eV and 1.85 eV, respectively. Therefore, the Eox-E0-0 

level of Dye 1 and Dye 2 is calculated to be –0.75 V 
and –0.79 V vs Fc/Fc+ in acetonitrile.  

Dye-sensitized solar cells (DSSCs) were 
constructed and compared in order to clarify the 
relationships between the sensitizing behavior of Dye 1 
and Dye 2 dye molecules and their structures. The 
DSSCs utilized these dyes as sensitizers for nano-
crystalline anatase TiO2. A typical photocurrent–
photovoltage (J-V) curve for cells based on Dye 1 and 
Dye 2 is depicted in Figure 3. The detailed 
photovoltaic parameters are also summarized in Table 
2. The solar energy to electricity conversion efficiency 
(η) of the DSSCs is calculated from short circuit 
current (Jsc), the open-circuit photovoltage (Voc), the 
fill factor (FF), and the intensity of the incident light 
(Pin) [22, 23]. 

 
 

Table 2: Photovoltaic performance of DSSCs based on Dye 1 and Dye 2. 

Dye VOC (V) JSC (mA.cm-1) FF η (%) 

1 0.64 2.47 0.65 1.03 

2 0.64 3.38 0.67 1.45 

 

 

 

 

Figure 3: Current density-voltage characteristics for Dye1 and Dye2. 
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According to the results shown in Table 2, under the 
standard global AM 1.5 solar condition, the conversion 
efficiencies of cells containing Dye 1 and Dye 2 are 
1.03% and 1.45%, respectively. The larger conversion 
efficiency of Dye 2 sensitizer is probably due to the 
stronger electron withdrawal ability of the combination 
of two cynoacrylic groups. The conversion efficiency 
of solar energy to electricity of the present organic dyes 
could be improved by extending the conjugated length 
of the organic dyes or by incorporation of a thiophene 
π-bridge [18, 24-26]. 

 

4. Conclusions 
Two metal-free organic dyes (D-π-A) to be used as 
sensitizers in DSSCs were designed and synthesized 
based on indigo by employing acrylic acid and 
cyanoacrylic acid as acceptor units. These dyes were 
identified using FTIR, 1HNMR, 13CNMR, elemental 
analysis and UV-Visible spectroscopic techniques. The 
spectrophotometric properties of the prepared organic 
dyes in solvent and on TiO2 films were examined. 

According to the results, Dye 2 containing 
cyanoacrylic acid as the acceptor group showed 
bathochromic shifts compared to Dye 1. In all cases, 

the absorption maxima of Dye 1 and Dye 2 applied on 
the surface of a TiO2 film gave a bathochromic effect 
compared to the corresponding dye spectra in solution. 
Finally, the prepared dyes were utilized in constructed 
DSSCs and their photovoltaic behaviors were assessed. 
A solar energy to electricity conversion efficiency of 
1.03 and 1.45 percent were achieved for Dye 1 and Dye 
2, respectively. Dye 2 containing cyanoacrylic acid 
gave higher conversion efficiency than Dye 1 which 
contains a cyanoacrylic acid as acceptor unit due to its 
stronger electron withdrawing ability. Detailed 
experiments and investigation of the interfacial charge 
transfer processes of these dyes are currently in 
progress aiming to further increase the overall 
performances of DSSCs fabricated with this new group 
of dyes. 
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