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n many applications of color technology such as spectral color 

reproduction, it is of interest to represent the spectral data with lower 

dimensions than spectral space dimensions. It is more than half of a century 

that Principal Component Analysis (PCA) method has been applied to find the 

number of independent basis vectors of spectral dataset and representing 

spectral reflectance with lower dimensions. Recently, a new Interim Connection 

Space (ICS) named LabPQR was introduced, which contains three colorimetric 

dimensions and additional black metamer space. In the present study, the 

performance of PCA method in comparison to LabPQR was investigated for 

representation of spectral reflectance. For this end, different color data sets 

including Munsell, Glossy Munsell, GretagMacbethColorChecker, Esser test 

chart and two printing datasets were evaluated. The results show that, the 

performance of PCA and LabPQR, depends on the applied dataset. Based on 

spectral metrics such as RMS and GFC values, PCA has better results than 

LabPQR. Considering color difference errors, LabPQR is a better space than 

PCA even based on the color difference under second illuminant. Moreover, the 

dataset used for obtaining PQR vectors affects the representation results. For 

some datasets, the PQR components of the other sets perform better. However, 

obtaining PQR bases from the same data source, gives better results. It was 

found that Cohen and Kappauf-based methods performs better for all the 

datasets compared with unconstrained LabPQR method. Prog. Color Colorants 

Coat. 4(2011), 95-106. © Institute for Color Science and Technology. 
 

 
 

  

  

1. Introduction 

Spectral reflectance data is the most important and 

valuable information from a color sample. It is possible 

to achieve the color characteristics of the sample under 

any viewing conditions using spectral data. Spectral data 

is usually expressed with 31 dimensions in the range of 

400 nm to 700 nm with intervals of 10 nm, which is 

difficult to use in many applications such as color 

reproduction, color gamut mapping and, etc. In such 

cases, colorimetric features are usually considered which 

constrain metamerism effect. Therefore, it is always of 
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interest to reduce the dimensions of spectral data with the 

least error. During the last 50 years, Principal component 

analysis (PCA) has been considered as a useful 

mathematical tool for dimensionality reduction and 

recovery of spectral data. In 1964, Cohen published the 

first three principal components or basis vectors of a 

subset of 150 out of 433 Munsell chips reflectance 

spectra [1]. He concluded that the spectral data of these 

150 color chips depend only on three components, which 

account for 99.18% of the variance. However, no 

evaluation of spectral reconstruction from these 3 basis 

vectors was applied. Following Cohen, several researches 

have been done on applying PCA method for extracting 

the suitable number of basis vectors for different spectral 

datasets [2-18]. Maloney investigated 462 Munsell 

spectral reflectances and a set of natural spectra. He 

mentioned that the first 5 to 7 basis vectors of Munsell 

dataset are appropriate for representing Munsell as well 

as other datasets. Jaaskelainen et al. extracted the 

principal vectors of Munsell chips and a set of 218 

natural spectral reflectances. They found that the basis 

determined using the Munsell spectra can be used for 

representing the natural spectra. In addition, it was 

concluded that more basis vectors of Munsell dataset are 

needed to represent the natural spectra with the same 

accuracy [2]. Parkkinen et al. investigated the number of 

PC vectors which is needed to represent a set of 1257 

reflectance spectra of the Munsell chips. They reported 

that as many as eight eigenvectors were necessary, for 

acceptable results, which were more than the number 

proposed by Cohen and also Maloney [3]. Dannemiller 

investigated a suitable number of basis vectors which are 

needed for representation of natural objects using 337 

samples. Ideal-observer analysis was used to determine 

the number of basis functions necessary for representing 

the spectral reflectances of natural samples. He reported 

that three eigenvectors are necessary and probably 

sufficient for representing the spectral reflectance of 

natural objects [4]. Vrhel et al. performed principal 

component analysis on a set of 354 spectral reflectances 

including 64 Munsell chips, 120 Du Pont paint chips, and 

170 reflectance spectra from various natural and man-

made objects. They reported the reconstruction error of 

PCA method using 3 to 7 basis vectors. The errors were 

measured as average and maximum CIELAB color 

difference as well as square spectral error. They noted 

that even with seven basis functions, the maximum color 

difference was 5.05. Moreover, as many as 16 basis 

vectors have to be taken into account if 99% of the 

information content is to be preserved. [5]. Eem et al. 

computed the basis vectors of the reflectance spectra of 

1,565 glossy Munsell color chips by using the PCA 

method. They found that the first four principal vectors 

of the Glossy Munsell dataset can be accurately used for 

reconstruction of Macbeth Color Checker spectral data. It 

was shown that with the first three characteristic vectors, 

however, color differences between the measured and 

reconstructed spectra were not negligible. [6]. Lenz et al. 

investigated the properties of basis vectors of three 

datasets included the Munsell colours of Parkkinen et al, 

1269 Munsell chips and a set of 1513 NCS spectra. They 

reported that the first few eigenvectors of these datasets 

are highly correlated. No conclusion is drawn on the 

number of basis spectra needed, but 6 were used as an 

example, giving a reconstruction error of about 4%. [7]. 

Garcia et al. applied PCA method for representing the 

reflectances of a group of 5574 acrylic paint on paper. 

They stated that the first 7 basis vectors were sufficient 

for more adequate mathematical representation of the 

spectral-reflectance curves. In addition, they investigated 

the effect of sample hue on the performance of PCA 

method by hue grouping the samples. They showed that 

representing the spectral data using hue categorized 

bases, reduces 1 or 2 of the vectors needed to attain the 

same accuracy of the overall basis [8]. 

Continuously during the last half century, different 

approaches such as recovery of spectral reflectance and 

device color characterization have been introduced 

applying PCA method on spectral data [9-15]. Connah et 

al. described the development of a mathematical model 

of a multispectral imaging system that takes into account 

imaging parameters and noise. Their reconstruction 

method was based on the fact that the vast majority of 

reflectance spectra for natural and man-made surfaces are 

smooth functions of wavelength. They applied PCA 

method for obtaining basis vectors for spectral recovery 

from camera responses. The number of basis functions 

used in the recovery process was always equal to the 

number of sensor channels [9]. Ramanath et al carried 

out a study to compare the color spaces with spectral 

spaces derived by a variety of dimensionality reduction 

techniques such as PCA. They showed that in terms of 

interval scales, there are large differences between color 

and spectral spaces. They pointed out that spectral spaces 

suffer from lack of specific relationship to human color 

vision and so the term "color space" should not be used 

for them [10]. Fairman et al reviewed the method of 

calculation and presented tables of the principal 
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components of a very large collection of object color 

samples that was derived by combining the specimens in 

the Munsell Book of Color with those in the Swedish 

Natural Color System and adding the samples of the 

OSA-UCS atlas. The total number of the specimens and 

the spectra was 3,534. They described two kinds of 

principal-component coordinates of a measured 

reflectance spectrum; one obtained by least-square best 

fit and the other by tristimulus match under one or more 

specified lights. Moreover, they proposed some possible 

new uses for principal-component analysis of 

reflectances [11]. Cheung et al. studied same methods for 

the recovery of reflectance spectra from the responses of 

trichromatic camera systems. They suggested a new 

method for reflectance recovery that finds the smoothest 

spectrum consistent with both the colorimetric data and a 

linear model (based on PCA technique) of reflectance. 

Their proposed method gave the lowest maximum 

colorimetric error in terms of camera characterization 

with test data that were independent of the training data. 

However, they reported that none of the evaluated 

recovery techniques could outperform most of standard 

polynomial techniques [12]. Mansouri et al introduced an 

algorithm that makes PCA adaptive in the framework of 

reflectance recovery from tri-stimuli (color camera). 

They proposed the adaption of the PCA basis derivation 

by selecting more relevant elements for each sample 

from the training set elements. The adaptivity criterion is 

achieved by a likelihood measurement. The spectral 

reflectance estimation results were evaluated with the 

commonly used goodness-of-fit coefficient and color 

difference. The results prove the effectiveness of this 

algorithm [13]. Tzang et al reported a valuable review 

paper on the application of PCA method for color 

technology [14]. In recent years to be able to spectral 

reproduction of color images, Derhak & Rosen proposed 

a new interim connection space named LabPQR which 

included three colorimetric components (L*, a*and b*) 

and three metameric blacks [15]. Tsutsumi et al. also 

investigated the LabPQR about how to derive a 

metameric black and the number of dimensions to 

include [16].  

The present study introduces a new application for 

LabPQR as a method for dimensionality reduction of 

spectral space compared to PCA. To this end, the 

performance of LabPQR color space as a semi spectral 

color space with 6 dimensions is investigated for express 

different datasets with lower dimensions. In addition, the 

traditional PCA method is applied with the same 

dimensions and the performance of PC space (which is 

also a spectral space) is compared with LabPQR.  

 

2. Experimental 

2.1. Principal component analysis (PCA)  

The purpose of PCA is to identify the dependence 

features of a dataset and reduce the dimensionality of it 

while preserving as much information as possible [17-

18]. The basis vectors of a dataset are the eigenvectors of 

its covariance matrix.  

If R is an m×n matrix with m spectral samples along 

n wavelengths, the reconstruction spectral with p limited 

dimensions can be computed using equation 1. In this 

equation, FV is an m×p matrix consists of the first p 

eigenvectors of the covariance matrix of R, and R̂  is the 

represented spectra with p dimensions.   
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The original data can be estimated by equation (2). 

The estimation error is related to the number of PC basis 

vectors used. Obviously, the accuracy increases by the 

number of basis vectors.   
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2.2. Lab PQR method [15-16] 

In LabPQR method, it was proposed that the spectral 

reflectance vector is converted to L*, a*, b* and PQR. In 

this regard, L*a*b* represents the three colorimetric 

values (CIELAB) of the sample and PQR describes a 

stimulus metameric black, a spectral difference between 

the actual spectrum and a spectrum derived based on the 

CIELAB components. Two methods have been discussed 

to obtain PQR components, named unconstrained 

LabPQR and Cohen-Kappauf based (CK-based) 

LabPQR. In unconstrained LabPQR, metameric blacks 

are derived after applying a statistical analysis of a 

specific device’s metamer space and for CK-based 

LabPQR, Cohen and Kappauf’s spectral decomposition 

is applied. 

In Cohen and Kappauf decomposition method, any 

spectral reflectance (R) can be decomposed to two main 

parts including fundamental (N*) and black metamers 



 Gorji Kandi 

98 Prog. Color Colorants Coat. 4(2011), 95-106 

(B). Fundamental metamer can be obtained from the 

tristimulus values by the following equation: 
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where cN  is a 3 by 1 tristimulus vector and A represents 

the illuminant and observer pair according to equation 4. 

 

SeA ′×=       (5) 

 
where e stands for the spectral power distribution of the 

illuminant and S is the spectral sensitivity of the standard 

observer. The black is computed from the difference 

between the original spectral data and N* as follows.  
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Based on LabPQR space, again any spectral data is 

reconstructed from two main parts including tristimulus 

values and an additional part as follows: 
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     (7) 

 

where pN is a 3 by 1 vector of PQR values, V is a n by 3 

matrix describing PQR bases and T is a n by 3 

transformation matrix with n samples. T can be ckT  

based on Cohen and Kappauf’s metameric black. For 

unconstrained metameric black approach, T is 

determined by a matrix calculation using least square 

analysis and applying tristimulus vectors. The 

computation is done by equation 8.  
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PQR bases V were derived using principal 

component analysis method on a set of metameric blacks 

which is defined as: 

 

cNTRB −=       (9) 

 

The first three principle vectors of B )( PQRV are 

computed using PCA method to estimate the metameric 

blacks. If the first two eigenvectors are applied, V is 

expressed as Vpq and for only one vector it defined as 

Vp. 

 
2.3. Methodology 

In this study, the accuracy of LabPQR space was 

evaluated in comparison with standard PCA method for 

representation of spectral data with lower dimensions and 

applying different color sample sets. To this end, six 

different datasets including 1269 Matt Munsell set, 1600 

Glossy Munsell set, Gretag Macbeth Color Checker (24 

chips), IT8.7/2 chart and two printing charts including a 

set of 2250 samples and a 2500 color chart, were used. 

The reason for choosing these color charts is that they 

are standard color sets, which almost have acceptable 

color gamuts and are generally used in similar 

researches. Therefore, to be able to compare the obtained 

results with the previous ones and give the opportunity to 

readers to do the same computational procedure, similar 

charts have been applied in this research. 

About the printed patches, it is because one of the 

most important applications for LabPQR is spectral color 

management, which is usually utilized for printers. 

Therefore, it is important to check the applicatin of this 

method for different printers. In one of the earliest 

researches which proposed this method [16], a Canon 

i9900 dye-based inkjet printer some other standard tests 

were applied. In the present study, the method is tested 

for two other inkjet printers. The first printed colors were 

produced by an Hp Photosmart Pro B8850 photo printer. 

This printer had eight ink sets including cyan, yellow, 

magenta, light cyan, light magenta, gray, and both a 

matte black and photo black. The other printed set, 

consisted of 2500 samples were printed by a four-ink Hp 

Deskjet 1220c printer containing cyan, yellow, magenta 

and black inks. Both two color charts were printed on 

Premium Silky Photo Paper.  

The spectral reflectances of the printed colors were 

measured using a GretagMacneth Eye-One spectro-

photometer in the range between 380 nm and 730 nm. 

For all the samples and experiments, the applied data was 

between 400 nm and 700 nm. The color characteristics of 

the samples were calculated under D50 illuminant and 

the 1931 CIE standard observer.  
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Figure 1: The color distribution of the used color datasets in 
∗∗bCIEa  color space. 

 

 

D50 standard illuminant represents warm daylight 

and is usually used in the graphic arts and printing 

industries. Considering that PCA and LabPQR methods 

are generally applied for multispectral imaging and color 

management, D50 is almost applied in related researches 

as a standard illuminant. Because of the small size of the 

samples of the color charts, the viewing condition should 

be according to 1931 CIE (2°) standard observer. Figure 

1 shows the color coordinates of the samples in CIEa
*
b
*
 

color space.  

Traditional PCA method by 6, 5, 4 and 3 PC 

components and LabPQR method by applying three, two 

and one black vectors (LabPQR, LabPQ and LabP) was 

employed for spectral representation of the mentioned 

color datasets. 
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Figure 2: The first six PC vectors of different datasets. 

 

Reconstruction error has been reported based on the 

average color difference values using CIEDE2000 

(1:1:1) [19], Root Mean Square Error (RMSE) of 

spectral reflectance and Goodness-of- Fit Coefficient 

(GFC) [20]. 

GFC metric is calculated by the following equation, 

where R and R̂  are the original and reconstructed 

spectral reflectance, respectively. The values of the 
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GFC range from 0 to 1, where 1 indicates a perfect 

reconstruction. The goodness of GFC value is 

evaluated as follows: 

If GFC >0.99, the reconstruction is acceptable,  

If the GFC >0.999, the reconstruction is very good,  

If it was >0.9999, the reconstruction is mathematically 

almost exact 
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3. Results and discussion 

3.1. PC vectors, PQR bases and metameric 

blacks of different dataset 

Figure 2 shows the first six (from 31) basis vectors or 

PC vectors of the applied color sets. As mentioned 

before, the spectral reflectances in the range of 400nm 

and 700nm by 10nm intervals were considered.  

The Cohen-Kappauf metameric blacks of the six color 

sets are plotted in Figure 3. As expected, the metameric 

blacks of all the datasets are approximately similar. 

 

Figure 3: Metameric blacks of different datasets computed by C-K decomposition method. 
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In addition, the CK-based PQR vectors of each set 

are shown in Figure 4. It can be seen that although the 

PQR vectors are dependent on the dataset, there are 

some similarities between them.  

 

3.2. The results of representing spectral data 

using PCA and LabPQR methods 

The results of applying PCA and CK-based LabPQR 

methods for spectral reflectance representation with 6 

to 3 dimensions (using from 6 to 3 principle bases 

determined by PCA or 3 to 1 metameric blacks 

determined by LabPQR) based on RMS, GFC and 

color differences under first and second illuminant are 

given in Tables 1, 2, and 3, respectively. As illustrated 

in Table 1, according to RMS and also GFC terms 

(Table 2), for all the color sets, representation of 

spectral reflectance by PCA method causes a lower 

spectral error than CK-based LabPQR with the same 

dimensions (for instance, 6PCA in comparison with 

LabPQR or 5PCA compared to LabPQ). 

 

 

 

Figure 4: PQR bases of CK-based Lab PQR for different datasets. 
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Table 1: The mean of RMS values for representation of each dataset by applying PCA and CK-based Lab PQR. 

PCA Lab  

6 PCs 5 PCs 4 PCs 3 PCs PQR PQ P 

Munsell 0.0076 0.0094 0.0130 0.0192 0.0088 0.0163 0.0356 

GlossyMunsell 0.0086 0.0109 0.0147 0.0213 0.0107 0.0167 0.0405 

Macbeth 0.0109 0.0150 0.0201 0.0298 0.0144 0.0217 0.0491 

IT8.7/2 0.0051 0.0083 0.0094 0.0137 0.0072 0.0097 0.0265 

Printed colors1 0.0035 0.0047 0.0074 0.0159 0.0066 0.0144 0.0348 

Printed colors2 0.0040 0.0058 0.0093 0.0208 0.0089 0.0167 0.0358 
 

 

Table 2: The mean of GFC values of representation of each dataset by applying PCA and CK-based Lab PQR. 

PCA Lab  

6 PCs 5 PCs 4 PCs 3 PCs PQR PQ P 

Munsell 0.9991 0.9987 0.9974 0.9949 0.9990 0.9965 0.9867 

Glossy Munsell 0.9991 0.9986 0.9972 0.9951 0.9988 0.9970 0.9857 

Macbeth 0.9974 0.9964 0.9935 0.9883 0.9968 0.9942 0.9771 

IT8.7/2 0.9994 0.9987 0.9985 0.9971 0.9991 0.9983 0.9921 

Printed colors1 0.9913 0.9910 0.9906 0.9625 0.9952 0.9726 0.9566 

Printed colors2 0.9991 0.9989 0.9980 0.9801 0.9984 0.9930 0.9744 

 

 

Table 3: The mean color difference under illuminant D50 and illuminant A as the reference and the second illuminants, 

respectively (according to 2° CIE standard observer). 

D50 illuminant A illuminant 

PCA PCA Lab 

 

6 PCs 5 PCs 4 PCs 3 PCs 6 PCs 5 PCs 4 PCs 3 PCs PQR PQ P 

Munsell 0.5828 0.5904 1.3347 1.9942 0.4867 0.5436 1.3618 1.7117 0.1695 0.6376 0.8857 

GlossyMunsell 0.5431 0.5835 1.1367 2.3057 0.4600 0.5444 1.2092 1.7041 0.1429 0.5859 0.8719 

Macbeth 0.6690 0.7671 1.5052 4.8594 0.7440 0.8156 1.8747 4.1904 0.1903 0.7446 1.1615 

IT8.7/2 0.2715 0.5186 0.6308 1.8655 0.3144 0.6256 0.6815 1.4713 0.1675 0.3419 0.8151 

Printed colors1 0.6332 0.7614 1.0249 3.8904 0.8095 0.9976 1.1540 3.5088 0.2052 1.0460 1.3523 

Printed colors2 0.3088 0.3696 0.9048 3.6271 0.4042 0.4871 1.0165 3.0503 0.2313 0.7791 1.4788 

 

 

As expected, reducing the number of vectors of PC 

and similarly PQR makes increasing the RMS and 

decreasing the GFC values.  

By comparing different datasets, it can be seen that, 

based on RMS values, the best performance of PCA 

method is obtained for Printed colors 1 followed by 

Printed colors 2 and IT8.7/2; for LabPQR method, 

Printed colors 1 and IT8.7/2 show the least error. 

However, based on GFC values, and for PCA method, 

IT8.7/2 shows the best performance followed by 

Munsell, Glossy Munsell and Printed colors 2; for 

LabPQR the best GFC was again obtained for IT8.7/2 

followed by Munsell. In addition, for both PCA and 

LabPQR methods, Printed colors 1 performed the worst 

which is unexpected according to RMSE results. 

Generally, the printed colors 2 can be represented with 

the lowest error because this chart is almost a complete 

and compact chart including patches which properly 
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cover the printed gamut so the PC vectors of this chart 

would be adequate to represent each printed sample. 

Consequently, PCA method is a better choice as a lower 

dimensional color space based on spectral criteria such as 

RMS and GFC values.  

The average color difference values of representation 

of spectral data by the PCA and CK-based methods are 

given in Table 3. Using LabPQR method the color 

difference under reference illuminant is zero so it is not 

shown here. As mentioned above, the minimum color 

difference under illuminant D50 is obtained for Printed 

color sets by applying PCA method with 6 PC bases. 

Totally, the mean color difference values under reference 

illuminant is varied from about 0.30 to 0.63 units of 

CIEDE2000 (1:1:1) by applying 6 PC vectors. The 

values of color difference increases by eliminating more 

PC bases. Moreover, it is dependent on the applied 

dataset. Considering the color difference values under 

illuminant A, CK-based LabPQR method gives a better 

result for all the sets. The results of Table 3 show that, 

considering colorimetric criteria, LabPQR is a better 

choice. 

In general, it was shown that like previous studies, 

spectral data can be preciously expressed with only six 

PC or LabPQR vectors. Moreover, LabPQR would be a 

more powerful technique if it is important to preserve the 

exact colorimetric values of the sample.   

 
3.3. The effect of the source of metameric blacks 

(PQR) on the performance of LabPQR 

Each dataset was represented by applying the PQR other 

bases ; the obtained results are reported in Table 4.  

 

Table 4: Reconstruction results for each dataset using other metameric blacks for CK-based Lab PQR method. 

PQRs dataset  

Munsell GlossyMunsell Macbeth IT8.7/2 Printedcolors1 Printedcolors2 

Munsell 0.0088 0.0100 0.0104 0.0149 0.0177 0.0273 

GlossyMunsell 0.0106 0.0107 0.0115 0.0160 0.0183 0.0287 

Macbeth 0.0148 0.0150 0.0144 0.0181 0.0205 0.0290 

IT8.7/2 0.0134 0.0131 0.0123 0.0072 0.0100 0.0139 

Printed colors1 0.0144 0.0128 0.0128 0.0125 0.0066 0.0147 

R
M

S
E

 

Printed colors2 0.0200 0.0194 0.0192 0.0178 0.0143 0.0089 

Munsell 0.9990 0.9985 0.9980 0.9942 0.9925 0.9831 

GlossyMunsell 0.9989 0.9988 0.9983 0.9949 0.9940 0.9856 

Macbeth 0.9974 0.9975 0.9968 0.9930 0.9923 0.9854 

IT8.7/2 0.9955 0.9956 0.9962 0.9991 0.9976 0.9951 

Printed colors1 0.9714 0.9758 0.9777 0.9728 0.9952 0.9755 

G
F
C

 

Printed colors2 0.9854 0.9866 0.9878 0.9885 0.9935 0.9984 

Munsell 0.1695 0.1650 0.1691 0.4113 0.2857 0.1994 

GlossyMunsell 0.1881 0.1429 0.1567 0.4252 0.2602 0.1945 

Macbeth 0.2149 0.1880 0.1903 0.5008 0.3824 0.2612 

IT8.7/2 0.2086 0.2361 0.2505 0.1675 0.3404 0.1848 

Printed colors1 0.4100 0.2059 0.1799 0.8863 0.2052 0.3024 

 (
A

) 

 

Printed colors2 0.3335 0.2227 0.1972 0.6240 0.2475 0.2313 
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Table 5: Spectral representation results for different datasets using unconstrained Lab PQR (for each dataset the 

metameric blacks of itself are applied). 

RMSE GFC )(AE
ba ∗∗∆   

LabPQR LabPQ LabP LabPQR LabPQ LabP LabPQR LabPQ LabP 

Munsell 0.0288 0.0440 0.0501 0.9835 0.9679 0.9628 0.4499 0.4809 1.0639 

GlossyMunsell 0.0430 0.0495 0.0557 0.9711 0.9682 0.9637 0.4599 0.5094 1.1451 

Macbeth 0.0458 0.0480 0.0518 0.9754 0.9743 0.9714 1.0778 1.1007 1.1783 

IT8.7/2 0.0365 0.0396 0.0444 0.9717 0.9702 0.9676 0.5583 0.8571 0.8595 

Printed colors1 0.0374 0.0438 0.0568 0.9413 0.9380 0.9249 1.0212 1.3458 2.4466 

Printed colors2 0.0424 0.0471 0.0611 0.9541 0.9505 0.9336 1.0801 1.3177 2.5205 

 

 

 

The best result of each row is underlined. Based on 

RMS values, each dataset resulted in the best by applying 

PQR bases of it. Only for GlossyMunsell, PQR of the 

Munsell gives almost a little better result. The maximum 

GFC value for GlossyMunsell is obtained using PQR of 

the Munsell dataset however it is close to GlossyMunsell. 

For the Macbeth set, the PQR of Glossy Munsell gives 

the best GFC result and for the other sets, the highest 

GFC values are obtained using their PQR. Considering 

the color difference under illuminant A, except IT8.7/2 

and Printed colors1, the other data sets give their 

minimum color difference using the PQR of 

GlossyMunsell. For IT8.7/2 and Printed colors1, the best 

result is obtained applying its own PQRs bases. 

Consequently, considering all the three criteria it seems 

that using the metameric blacks of the same dataset 

would have a better result.  

 
3.4. Comparing CK-based and unconstrained 

LabPQRs methods 

The results of unconstrained LabPQRs are shown in 

Table 5. Comparing these results with the previous tables 

(Table 1 to 3) shows that based on all the three metrics 

(RMS, GFC and color difference under A illuminant), 

CK-based LabPQR performs better for all the datasets. 

 

 

 

4. Conclusions 

PCA is a well known mathematical tool for spectral 

representation with a lower dimensional space. Recently, 

a new interim connection space called LabPQR was 

introduced. In this paper, different datasets including 

Munsell, GlossyMunsell, Macbeth, Esser test chart and 

two printed charts were applied and the performance of 

PCA and LabPQR methods for representation of spectral 

data in a lower dimensional space were compared with 

different metrics consisted of spectral and colorimetric 

criteria. Moreover, the effect of dataset on the accuracy 

of two methods was evaluated. The experimental results 

showed that the performance of PCA and LabPQR 

methods is completely depended on the applied dataset. 

Considering spectral metrics such as RMS and GFC 

values, PCA method generally shows more accuracy for 

all the datasets. According to the colorimetric results, 

CK-based LabPQR can be a better choice, and is more 

appropriate to use the same dataset for obtaining PQR 

vectors. Comparison between CK-based and 

unconstrained LabPQR shows that the former clearly has 

better results. 

Consequently, it seems that both the first PC vectors 

of PCA method and LabPQR can be applied to represent 

spectral data in a lower dimension. However, while 

spectral properties are more important, PCA method is 

more applied, and LabPQR is preferred for preserving 

colorimetric properties.   
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