Epoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes

Journal: Vol. 10, No.4, autumn 2017 - Article 7   Pages :  245 Until 252

Article Code:

M.R. Saeb: Institute for Color Science and Technology - Departments of Resin and Additives
H. Vahabi: Université de Lorraine - Laboratoire MOPS E.A
M. Jouyandeh: Université de Lorraine - Laboratoire MOPS E.A
E. Movahedifar: Amirkabir University of Technology–Mahshahr Campus - Department of Polymer Engineering
R. Khalili: University of Tehran - Kish International Campus

Article's abstract:

Whis work presents a study on the flammability of epoxy coatings containing two types of nano-scale fillers as potential flame retardants: expandable graphite (EG) and halloysite nanotubes (HNTs). Both nanocomposites are prepared by incorporation of the same amount of nanofiller into the epoxy resin for the sake of comparison. Fire retardant nanocomposite coatings are cured through a two-stage procedure in a mold and oven, respectively. The cone calorimeter test is performed to investigate the effect of using these flame retardants on the peak of Heat Release Rate (pHRR), Total Heat Release (THR), Total Smoke Production (TSP) and Time-To-Ignition (TTI). It was found that the thermal behavior of blank epoxy and epoxy/EG was quite different and loading EG leaded to a significant fall in pHRR. In the presence of EG, the thin layer of residue was formed at first stages of ignition, grown rapidly and became denser acting as a strong barrier against fire. This barrier could retard the burning and doubled the total time of burning. By contrast, HNTs could not affect as an efficient flame retardant in the epoxy-based coating. Even by high loading level of 9 wt.%, HNT could not influence pHRR, TTI and THR parameters.

Epoxy coating, Flame retardancy, Nanocomposites, Expandable graphene, Halloysite nanotubes.

1. Y. Guo, C. Bao, L. Song, B. Yuan, Y. Hu, In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior, Ind. Eng. Chem. Res., 50(2011), 7772-7783. 2. C. L. Chiang, S.W. Hsu, Novel epoxy/expandable graphite halogen-free flame retardant composites− preparation, characterization, and properties, J. Poly. Res., 17(2010), 315-323. 3. K. Wu, L. Song, Y. Hu, H. Lu, B. K. Kandola, E. Kandare, Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin, Prog. Org. Coat., 65(2009), 490-497. 4. S. A. Kumar, T. Balakrishnan, M. Alagar, Z. Denchev, Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings, Prog. Org. Coat., 55(2006), 207-217. 5. G. Das, N. Karak, Thermostable and flame retardant Mesua ferrea L. seed oil based non-halogenated epoxy resin/clay nanocomposites, Prog. Org. Coat., 69(2010), 495-503. 6. Z. Ranjbar, S. Ashhari, A. Jannesari, S. Montazeri, Effects of Nano Silica on the Anticorrosive Properties of Epoxy Coatings, Prog. Color Colorants Coat., 6(2013), 119-128. 7. Z. Ranjbar, S. Montazeri, M. Jalili, Optimization of a Waterborne Epoxy Coatings Formulation via Experimental Design, Prog. Color Colorants Coat., 2(2009), 23-33. 8. M. Rashvand, Z. Ranjbar, Cathodic electrodeposion of nano titania along with the epoxy based coating and evaluation of its anticorrosion properties, Prog. Color Colorants Coat., 7(2014), 1-5. 9. M. R. Saeb, F. Najafi, E. Bakhshandeh, H. A. Khonakdar, M. Mostafaiyan, F. Simon, et al., Highly curable epoxy/MWCNTs nanocomposites: an effective approach to functionalization of carbon nanotubes, Chem. Eng. J., 259(2015), 117-125. 10. M. Nonahal, M. R. Saeb, S. Hassan Jafari, H. Rastin, H. A. Khonakdar, F. Najafi, F. Simon., Design, preparation, and characterization of fast cure epoxy/amine‐functionalized graphene oxide nanocomposites, Polym. Composite, DOI: 10.1002/pc.24415. 11. C. Martin, G. Lligadas, J. Ronda, M. Galia, V. Cadiz, Synthesis of novel boron‐containing epoxy–novolac resins and properties of cured products, J. Polym. Sci. A: Polym. Chem., 44(2006), 6332-6344. 12. Y. L. Liu, G. P. Chang, C. S. Wu, Halogen‐free flame retardant epoxy resins from hybrids of phosphorus‐or silicon‐containing epoxies with an amine resin, J. Appl. Polym. Sci., 102(2006), 1071-1077. 13. Y. Zheng, K. Chonung, X. Jin, P. Wei, P. Jiang, Study on the curing reaction, dielectric and thermal performances of epoxy impregnating resin with reactive silicon compounds as new diluents, J. Appl. Polym. Sci.,107(2008), 3127-3136. 14. B. Dittrich, K.A. Wartig, D. Hofmann, R. Mülhaupt, B. Schartel, Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stabil., 98(2008), 1495-1505. 15. B. Schartel, M. Bartholmai, U. Knoll, Some comments on the main fire retardancy mechanisms in polymer nanocomposites, Polym. Adv. Technol., 17(2006), 772-777. 16. B. Schartel, A. Weib, H. Sturm, M. Kleemeier, A. Hartwig, C. Vogt, R.X. Fischer, Layered silicate epoxy nanocomposites: formation of the inorganic‐carbonaceous fire protection layer, Polym. Adv. Technol., 22(2011), 1581-1592. 17. H. Rastin, Z. Ahmadi, M. R. Saeb, K. Formela, Microstructure, mechanical properties, and flame retardancy of nanoclay‐incorporated polyurethane flexible foam composites, J. Vinyl Addit. Technol., 22(2016), 415-422. 18. G. M. Wu, B. Schartel, H. Bahr, M. Kleemeier, D. Yu, A. Hartwig, Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites, Combus. Flame, 159(2012), 3616-3623. 19. H. Vahabi, A. Raveshtian, M. Fasihi, R. Sonnier, M. R. Saeb, L. Dumazert, Competitiveness and synergy between three flame retardants in poly (ethylene-co-vinyl acetate), Polym. Degrad. Stabil., 143(2017), 164-175. 20. T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, S. P. Bellayer, Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration, Polymer, 46(2005), 471-481. 21. S. S. Rahatekar, M. Zammarano, S. Matko, K. K. Koziol, A. H. Windle, M. Nyden, Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites, Polym. Degrad. Stabil., 95(2010), 870-879. 22. S. Kim, M. Poostforush, J. Kim, S. Lee, Thermal diffusivity of in-situ exfoliated graphite intercalated compound/polyamide and graphite/polyamide composites, Express Polym. Lett., 6(2012), 476-484. 23. A. Laachachi, N. Burger, K. Apaydin, R. Sonnier, M. Ferriol, Is expanded graphite acting as flame retardant in epoxy resin?, Polym. Degrad. Stabil., 117(2015), 22-29. 24. L. Zhang, M. Zhang, Y. Zhou, L. Hu, The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate, Polym. Degrad. stabil., 98(2013), 2784-2794. 25. G. Beyer, Carbon nanotubes as flame retardants for polymers, Fire Mater., 26(2002), 291-293. 26. D. Rawtani, Y. Agrawal, Multifarious applications of halloysite nanotubes: a review, Rev. Adv. Mater. Sci, 30(2012), 282-295. 27. Z. Jia, Y. Luo, B. Guo, B. Yang, M. Du, D. Jia, Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE, Polym. Plast. Technol. Eng., 48(2009), 607-613. 28. R. Berahman, M. Raiati, M. M. Mazidi, S. M. R. Paran, Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content, Mater. Design, 104(2016), 333-345. 29. S. Paran, G. Naderi, M. Ghoreishy, XNBR-grafted halloysite nanotube core-shell as a potential compatibilizer for immiscible polymer systems, Appl. Surf. Sci., 382(2016), 63-72. 30. M. Liu, B. Guo, M. Du, X. Cai, D. Jia, Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems, Nanotechnology, 18(2007), 455703. 31. D. Marney, L. Russell, D. Wu, T. Nguyen, D. Cramm, N. Rigopoulos, The suitability of halloysite nanotubes as a fire retardant for nylon 6, Polym. Degrad. Stabil., 93(2008), 1971-1978. 32. J. Zhao, C. L. Deng, S. L. Du, L. Chen, C. Deng, Y. Z. Wang, Synergistic flame‐retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE, J. Appl. Polym. Sci., 131(2014),150-159. 33. S. Azarmgin, B. Kaffashi, S. Davachi, Investigating thermal stability and flame retardant properties of synthesized halloysite nanotubes (HNT)/ethylene propylene diene monomer (EPDM) nanocomposites, Int. Polym. Proc., 30(2015), 29-37. 34. A. Hao, I. Wong, H. Wu, B. Lisco, B. Ong, A. Sallean, Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites, J. Mater. Sci., 50(2015), 157-167. 35. T. Zheng, X. Ni, Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin, RSC Adv., 6(2016), 57122-57130. 36. Y. Dong, B. Lisco, H. Wu, J. H. Koo, M. Krifa, Flame retardancy and mechanical properties of ferrum ammonium phosphate–halloysite/epoxy polymer nanocomposites, J. Appl. Polym. Sci., 132(2015), 275-287. 37. Q. Fatima Gillani, F. Ahmad, A. Mutalib, M. Ibrahim, E. Syahera, Thermal Degradation and Char Morphology of HNTs Reinforced Epoxy Based Intumescent Fire Retardant Coatings, Key Eng. Mater., 701(2014), 83-88. 38. S. Levis, P. Deasy, Characterisation of halloysite for use as a microtubular drug delivery system, Int. J. Pharmace., 243(2002), 125-134. 39. D. Porter, E. Metcalfe, M. Thomas, Nanocomposite fire retardants-a review, Fire Mater., 24(2000), 45-52.

Article's file
Page view: 695
Article's download quantity : 11

Article System Login

Prof. Zahra Ranjbar
Dr. Farahnaz Nourmohammadian
Assistant Editor:
Dr. Mozhgan Hosseinnezhad
ISSN (online):
Institute for Color Science and Technology (ICST)

Quick Access
What is your opinion about the manuscript subscription system of PCCC website?
Website Statistics
Page view:696
Online Visitors:15