Preparation, Characterization and Abrasion Resistance Property of Melamine Formaldehyde / Montmorillonite Nanocomposite Coatings

Journal: Vol.8, No.4, autumn 2015 - Article 2   Pages :  267 Until 281

Article Code:

Hossein Resalati: Gorgan university of agricultural sciences and natural resources - Department of pulp and paper technologies
Abouzar Hatam: Gorgan University of Agricultural Sciences and Natural Resources - Department of Pulp and Paper Technology
Mohammadreza Dehghani Firouzabadi: Gorgan university of aggricultural sciences and natural resources - Department of pulp and paper technologies

Article's abstract:

This study investigates preparation of melamine formaldehyde / montmorillonite nanocomposite coatings and evaluates its abrasion resistance property as a new material for wood based panel products. The ultrasonicated MF resin/clay blends with different clay loadings were applied in the form of coatings to the saturated decorative paper to prepare thermoset prepregs. Morphology and structure of nanocomposite coatings were characterized using X-ray diffraction and field emission scanning electron microscopy FE-SEM. Then viscoelastic properties of resultant prepregs were investigated using DMTA method. Tensile strength test was employed to determine tensile modulus and toughness of different prepregs. To evaluate abrasion resistance property of cured nanocomposite coatings, Taber abrasion test was performed on panels laminated with prepregs. The results showed that although modulus of storage stiffness and tensile strength of intercalated nanocomposite containing 4 clay was lower than that of partially exfoliated nanocomposite at 1 clay, its toughness and abrasion resistance property was amazingly better. This result of Taber abrasion test suggests the contribution of nanocomposite morphology to improving the abrasion resistance property in MF/montmorillonite nanocomposites instead of stiffness and strength. It was also found that there must be a relation between clay intercalated morphology in the nanocomposite structure and improving its toughness property. However, further research is needed to gain an in-depth understanding on its affecting mechanism.

Montmorillonite; Melamine Formaldehyde; Nanocomposite; Morphology; Abrasion Resistance.


English References:
1. B. Park, H. Jeong, Cure kinetics of melamine–formaldehyde resin/clay/cellulose nano-composites, J. Ind. Eng. Chem., 16(2010), 375-379.#2. T. N. Quang, G. B. Donald, Preparation of Polymer-Clay Nanocomposites and Their Properties, Adv. Polym. Tech., 25(2006), 270-285.#3. A. Dasari, On Toughening and Wear/Scratch Damage in Polymer Nanocomposites, PhD Thesis, School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, 2007.#4. X. Cai, B. Riedl, H. Wan, S. Y. Zhang, X. Wang, A study on the curing and viscoelastic characteristics of melamine-urea-formaldehyde resin in the presence of aluminium silicate nanoclays, Composites: Part A, 41(2010), 604-611.# 5. T. N. Quang, G. B. Donald, An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide, Polym, 48(2007), 6923-693.#6. N. Hasegawa, H. Okamoto, M. Kawasumi, M. Kato, A. Tsukigase, A. Usuki, Polyolefin-clay hybrids based on modified polyolefins and organophilic clay, Macromol Mater Eng, 280-281(2000),76-79.#7. P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly-(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification, Macromol Mater Eng, 275(2000), 8-17.#8. K. N. Kim, H. Kim, J. W. Lee. Effect of Interlayer Structure, Matrix Viscosity, and Composition of a Functionalized Polymer on the Phase Structure of Polypropylene-Montmorillonite Nanocomposites, Polym Eng Sci, 41(2001),1963-1969.#9. P. Marshall, B. Parent, What is a laminate? How decorative foils, low pressure laminates and high pressure laminate are produced, in Proceedings of TAPPI Plastic Laminates Symposium, Atlanta GA, USA, (1998).#10. S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym Sci 28(2003), 1539-1641.#11. D. Xian, K. E. Semple, S. Haghdan, G. D. Smith, properties and wood bonding capacity of nanoclay-modified urea and melanine formaldehyde resins, Wood Fiber Sci., 45(2013), 383-395.#12. X. Cai, Wood modifications for valued-added applications using nanotechnology-based approaches, PhD Thesis, The university of Laval, 2011.#13. H. Lie, G. Du, A. Pizzi, A. Celzard, Influence of Nanoclay on Urea-Formaldehyde Resins for Wood Adhesives and Its Model, J. Appl. Polym. Sci., 109(2008), 2442-2451.#14. Y. Lei, Q. Wu, C. M. Clemons, F. Yao, Y. Xu, Influence of nanoclay on properties of HDPE/wood composites, J. Appl. Polym. Sci., 106(2007), 3958-3966.#15. E. W. Kendall, B. R. Trethwey, Characterization of the polymerization of melanine formaldehyde resin using dynamic mechanical thermal analysis, in Proceedings of TAPPI Decorative & Industrial Laminates Symposium, Atlanta, Georgia, USA, (2002).#16. F. Lionetto, A. Maffezzoli, Monitoring the Cure State of Thermosetting Resins by Ultrasound, Materials, 6(2013) 3783-3804.#17. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, J. Mater. Sci. Eng, 28(2000) 1-63.#18. P. C. LeBaron, Z. Wang, T. J. Pinnavaia, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci., 15(1999), 11-29.#19. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T, K Kurauchi, O. Amigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res., 8(1993), 1179-1185.#20. P. B. Messersmith, E. P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6(1994), 1719-1725.#21. T. Agag, T. Koga, T. Takeichi, Studies on thermal and mechanical properties of polyimide-clay nanocomposites, J. Polymer, 42(2001), 3399-3408.#22. L. Song, Y. Hu, B. G. Li, S. F. Wang, W. C. Fan, Z. Y. Chen, A study on the synthesis and properties of polyurethane/clay nanocomposites, Int. J. Polym. Anal. Charact., 8(2003), 317-326.#23. M. A. Osman, J. E. P. Rupp, U. W. Suter, Tensile properties of polyethylene-layered silicate nanocomposites, Polym, 46(2005), 1653-1660.#24. T. D. Fornes, P. J. Yoon, H. Keskkula, D. R. Paul, Nylon 6 nanocomposites: the effect of matrix molecular weight, Polym, 42(2001), 9929-9940.#25. O. Becker, Y. B. Cheng, R. J. Varley, G. P. Simon, Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume, Macromolecules, 36(2003), 1616-1625.#26. C. Zilg, R. Mulhaupt, J. Finter, Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates, Macromol. Chem. Phys, 200(1999), 661-670.#27. N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes and R. E. Cohen, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45(2004), 487-506.#28. S. C. Tjong, S. P. Bao, Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 42(2004), 2878.#29. T. D. Fornes, D. L. Hunter, D. R. Paul, Effect of sodium montmorillonite source on nylon 6/clay nanocomposites, Polym, 45(2004), 2321-2331.#30. H. J. Sue, K. T. Gam, N. Bestaoui, N. Spurr, A. Clearfield, Epoxy nanocomposites based on the synthetic alpha-zirconium phosphate layer structure, Chem. Mater., 16(2004), 242-249.#31. D. Shah, P. Maiti, E. Gunn, D. F. Schmidt, D. D. Jiang, C. A. Batt and E. R. Giannelis, Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology, Adv. Mater., 16(2004), 1173-1177.#32. K. Wang, L. Chen, J. S. Wu, M. L. Toh, C. B. He, A. F. Yee, Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms, Macromol, 38(2005), 788-800.#33. A. S. Zerda, A. J. Lesser, Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior, J. Polym. Sci., Part B: Polym. Phys., 39(2001), 1137-1146.#34. T. X. Liu, W. C. Tjiu, Y. J. Tong, C. B. He, S. S. Goh, T. S. Chung, Morphology and fracture behavior of intercalated epoxy/clay nanocomposites, J. Appl. Polym. Sci., 94(2004), 1236-1244.#35. B. Qi, Q. X. Zhang, M. Bannister and Y. W. Mai, Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives, Compos. Struct., 75(2006), 514-519.#36. X. H. Liu and Q. J. Wu, Polyamide 66/clay nanocomposites via melt intercalation, Macromol. Mater. Eng., 287(2002), 180-186.#37. X. H. Liu, Q. J. Wu, L. A. Berglund, J. Q. Fan and Z. N. Qi, Polyamide 6-clay nanocompositles/polypropylene-grafted-maleic anhydride alloys, Polym, 42(2001), 8235-8239.#38. A. S. Zerda, A. Lesser, Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior, J. Polym. Sci., Part B: Polym. Phys., 39(2001), 1137-1146.

Article's file
Page view: 4862
Article's download quantity : 48

Article System Login

Prof. Zahra Ranjbar
Dr. Farahnaz Nourmohammadian
Assistant Editor:
Dr. Mozhgan Hosseinnezhad
ISSN (online):
Institute for Color Science and Technology (ICST)

Quick Access
What is your opinion about the manuscript subscription system of PCCC website?
Website Statistics
Page view:4,863
Online Visitors:45